基于磁链模型的非线性观测器

本文介绍了基于磁链模型的非线性观测器在PMSM电机控制中的应用,对比了传统反电势模型在低速下的问题。非线性模型通过观测磁链分量实现高精度角度和速度估计,仿真和实验结果表明,该模型在启动和动态响应方面表现出色,适用于高低速带载情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:PMSM常见的无感FOC方法,以滑模SMO最为知名。尤其在现阶段SPM更为广泛应用的低压小功率电机领域,高频注入HFI更多应用在初始启动阶段。滑模的实质是基于PMSM的反电势模型,让系统进入滑动模态,选取合适的控制率得到反电势分量,可以基于 α − β \alpha -\beta αβ坐标系,也可以基于 d − q d-q dq坐标系。

选择反正切或者PLL获取速度和角度。基于反电势模型,最大的限制在于低速下因为信噪比、死区等非线性因素的影响,获取精确的反电势变得更加困难,往往使用 i − f i-f if强拉的启动方式,带载能力弱,动态响应差,还需要两种方法切换。

简介:高低速下,反电势并不相同,但是转子的磁链是基本接近的。如果以磁链作为观测对象,就可以避免低速下信噪比和非线性因素的负面影响,这就是磁链模型的思路。经过朋友介绍,获悉了VESC使用的非线性磁链模型效果不错,应用广泛,自己也尝试了一下。

控制方法

基于 α − β \alpha-\beta αβ坐标系下的PMSM数学模型如下:
[ u α u β ] = [ R s + L α p L α β p L α β p R s + L β p ] [ i α i β ] + [ − ψ r ω r sin ⁡ θ ψ r ω r cos ⁡ θ ] \left[ \begin{array}{ccc} u_{\alpha} \\ u_{\beta} \end{array} \right] = \left[ \begin{array}{ccc} R_{s}+L_{\alpha}p & L_{\alpha\beta}p \\ L_{\alpha\beta}p & R_{s}+L_{\beta}p \end{array} \right]\left[ \begin{array}{ccc} i_{\alpha} \\ i_{\beta} \end{array} \right]+\left[ \begin{array}{ccc} -\psi_{r}\omega_{r}\sin\theta \\ \psi_{r}\omega_{r}\cos\theta \end{array} \right] [uαuβ]=[Rs+LαpLαβpLαβpRs+Lβp][iαiβ]+<

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

转子磁场定向

感谢您的认可

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值