前言:PMSM常见的无感FOC方法,以滑模SMO最为知名。尤其在现阶段SPM更为广泛应用的低压小功率电机领域,高频注入HFI更多应用在初始启动阶段。滑模的实质是基于PMSM的反电势模型,让系统进入滑动模态,选取合适的控制率得到反电势分量,可以基于 α − β \alpha -\beta α−β坐标系,也可以基于 d − q d-q d−q坐标系。
选择反正切或者PLL获取速度和角度。基于反电势模型,最大的限制在于低速下因为信噪比、死区等非线性因素的影响,获取精确的反电势变得更加困难,往往使用 i − f i-f i−f强拉的启动方式,带载能力弱,动态响应差,还需要两种方法切换。
简介:高低速下,反电势并不相同,但是转子的磁链是基本接近的。如果以磁链作为观测对象,就可以避免低速下信噪比和非线性因素的负面影响,这就是磁链模型的思路。经过朋友介绍,获悉了VESC使用的非线性磁链模型效果不错,应用广泛,自己也尝试了一下。
控制方法
基于 α − β \alpha-\beta α−β坐标系下的PMSM数学模型如下:
[ u α u β ] = [ R s + L α p L α β p L α β p R s + L β p ] [ i α i β ] + [ − ψ r ω r sin θ ψ r ω r cos θ ] \left[ \begin{array}{ccc} u_{\alpha} \\ u_{\beta} \end{array} \right] = \left[ \begin{array}{ccc} R_{s}+L_{\alpha}p & L_{\alpha\beta}p \\ L_{\alpha\beta}p & R_{s}+L_{\beta}p \end{array} \right]\left[ \begin{array}{ccc} i_{\alpha} \\ i_{\beta} \end{array} \right]+\left[ \begin{array}{ccc} -\psi_{r}\omega_{r}\sin\theta \\ \psi_{r}\omega_{r}\cos\theta \end{array} \right] [uαuβ]=[Rs+LαpLαβpLαβpRs+Lβp][iαiβ]+<