点乘公式一:
矢量点乘满足交换律,
点乘的一个几何意义:投影
可以计算得到b在方向上的有符号投影.
通俗地说,一光源它所发出的光线是垂直于方向的,那么b在方向上的影子,就是b在方向上的投影。
投影结果的正负号与和b的方向有关
- 当它们的方向相反(夹角大于90度)时,结果小于0;
- 当它们的方向互相垂直(夹角为90度)时,结果等于0;
- 当它们的方向相同(夹角小于90度)时,结果大于0;
点乘的性质一:点乘可结合标量乘法
点乘的性质二:点乘可结合矢量加法和减法,和性质一类似
点乘的性质三:一个矢量和本身进行点乘的结果,是该矢量的模的平方
这意味着,我们可以通过点乘来求矢量的模,而不需要使用模的计算公式。
点乘公式二:
补充:
余弦和反余弦关系公式: arccos(x) = a , cos(a) = x
我们应该知道 邻边/斜边,由上面投影可知,此处邻边的大小便是在方向下的投影,斜边为的模。
推导出公式一等于公式二。 我们还可以利用公式二求出两向量之间的夹角。
叉乘公式:
叉乘不满足交换律和结合律,但满足反交换律。
和平行四边形面积计算公式一样
本人已经被这本书的数理基础搞疯了................ 后面的数学内容还没整理.....
不知道是我数学太弱了还是怎么了...反正看这边书呢.就单纯看他数学基础部分..光靠看这书上的内容,可能还是无法理解这个数学知识,得动手做(这是必要的)还得动手查阅其他资料...