GelSight视触传感器使用方法

一、背景

Gelsight是MIT团队于2009年开发的视触传感器,用于测量接触物体的形状、纹理和受力情况。特别地,Gelsight还能进行滑动检测。为了使机械臂可以进行一些更精细地操作,实验室采购了一些Gelsight mini安装在二指末端夹爪上。现记录一下Gelsight和机械臂夹爪联合使用的方法,以防后期忘记。

二、Gelsight开箱

一个精致的小盒子,向上掰开两个卡扣即可打开。

在这里插入图片描述
打开箱子,从上到下,从左到右,一共四样东西,数据线(一头连接Gelsight,一头是Typt-C口的,用于连接电脑),marker标记的弹性体盖(黑色的那个,可以识别力的方向,具体应用可参考文献),Gelsight本体(带有识别物体形状的弹性体盖),调节分辨率的工具(一般用不到)。

在这里插入图片描述

Gelsight本体:

在这里插入图片描述
更换弹性体盖子的方法,捏住两边,然后往外拔。安装另外的弹性体盖,一定要注意两个引脚的位置,对应与Gelsight的两个小孔,如下面两张图所示,千万不要大力出奇迹,硬连接。
在这里插入图片描述

在这里插入图片描述

三、Gelsight使用方法

这一步测试在windows即可:

1、Gelsight传感器连接电脑。
2、登录https://www.gelsightmini.com网站。当使用物体与压弹性体接触时,该页面可以看到接触物体的表面形状,如下图所示:

Gelsight成像效果。
在这里插入图片描述
实物照片:
在这里插入图片描述
如果想读取marker的方向,也就是使用其感知交互力的功能,尽量在ubuntu系统下操作
在这里插入图片描述

四、Gelsight与机械臂末端执行器联合使用

我们实验室所使用的是巴毅自动化公司生产的BY-E140型号的末端执行器。
在这里插入图片描述
末端执行器控制方式可以分为有线连接和无线连接,我们一般是使用有线连接,即通过网线将末端执行器控制盒与笔记本电脑相连。
此外,需要配置修改本机电脑IP与夹持器保持同一个网段,夹持器出厂默认IP为192.168.137.9,那么本机对应网卡的IP则可以修改为192.168.137.xxx,其中xxx为非9的,1-255之间的数字,子网掩码:255.255.255.0。(在ip v4中修改)

有线连接时,在浏览器上输入192.168.137.9即可登录夹持器配置界面。

Gelsight的SKD包可以登录Gelsight的github网站下载https://github.com/gelsightinc/gsrobotics

### 传感器在缺陷检测中的方法和技术实现 传感器是一种结合了觉和觉功能的新型传感器,能够在物体表面进行精确的数据采集并分析潜在的缺陷。以下是关于如何利用传感器进行缺陷检测的技术实现: #### 1. 高分辨率成像技术 传统的传感器受限于压力或电阻的变化,难以捕捉细微的表面特征[^1]。然而,基于光学原理的传感器(如GelSight Mini),可以通过高分辨率成像技术捕获纳米级别的表面细节。这种方法不仅提高了数据采集的精度,还使微小缺陷得以清晰显现。 #### 2. 多模态感知能力 某些先进的传感器(如ProTac Link)具备多模态感知能力,能够同时获取觉和觉信息[^2]。这种双重感知模式允许设备在接过程中实时记录表面形变,并通过建立精准的力学模型估算接位移与深度。这些参数对于判断是否存在缺陷至关重要。 #### 3. 自动聚焦机制优化图像质量 为了进一步提高缺陷检测的效果,现代传感器采用了微型化的自动调焦相机系统。该系统的引入减少了因手动调整带来的误差风险,从而确保每次测量都能获得高质量的图像输出[^4]。 #### 4. 均匀光照设计增强对比度 由于光线分布不均可能影响最终成像的质量,因此许多传感器特别注重光源的设计。例如,在小型化产品中采用全内反射方式解决侧面照明造成的亮度差异问题,进而提升整体影像的一致性与清晰程度。 #### 5. 耐磨材料延长使用寿命 针对实际应用场景可能会面临磨损挑战的情况,“贴金工艺”作为一种有效手段被推荐用于保护敏感部件免受损害的同时保持良好性能表现。此方法已在特定领域如植物学研究及古生物学探索等方面证明其价值所在。 综上所述,通过上述关键技术的支持,传感器已经能够在工业生产环节发挥重要作用——无论是精密零件还是复杂曲面产品的外观瑕疵筛查都变得更加高效可靠。 ```python # 示例代码展示简单的图像处理逻辑以辅助缺陷检测 import cv2 from skimage import filters, morphology def detect_defects(image_path): image = cv2.imread(image_path) # 将彩色图片转换为灰度图以便后续操作更加简便快捷 gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 使用滤波器去除噪声干扰项 blurred = filters.gaussian(gray_image, sigma=1.0) # 进行形态学开运算消除细小对象 selem = morphology.disk(5) cleaned = morphology.opening(blurred, selem) # 边缘检测算法寻找可疑区域轮廓线位置坐标集合列表形式返回结果数组变量edges edges = cv2.Canny(cleaned.astype('uint8'), threshold1=50, threshold2=150) return edges ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值