【LLM大模型】Embedding到底干了啥?

开发RAG系统,我遇到的第一个比较抽象的概念就是Embedding。 网上查一查无非就是把文本数字化、用向量表示文字等等高深的描述。这些表述没错,文本Embedding是将文本数据转换为机器可以理解的数字化表达形式,用向量来承载 简单来说,它把文本表示成高维空间(可以用三维想象)中的点,通过这种方式,文本之间的关系(如相似度)可以很好地反映在这些点的在空间中的绝对位置上。

但是了解了之后依然很抽象,到底embed了啥?有啥用? 一个词和一句话都是如何Embedding的?

下面从概念、作用、原理三个方面说一下我的理解,然后再看看实际的例子。这样应该可以明白怎么来的和怎么没的(有啥用)。

困扰我的概念

在了解Embedding的时候会遇到两个常见的概念词向量(Word Vector)和词嵌入(Word Embedding)。《GPT图解》书中提到过,这两个概念词汇通常可以互换使用,另外也查看了一些资料,这些都说明两个概念基本上是一致的。但是其实从字面意思能看得出词向量是嵌入的结果,词嵌入是说嵌入的方法和过程。那说说我的理解。([[张量、向量、矩阵有什么关联和差别?]])

词向量(Word Vector)

词向量本质是个向量,是词语在空间中的表示。也就是用一个定长的向量捕捉了词语和其他词语之间的语义关系。这个词向量可能是由各种嵌入方式生成的,比如Word2Vector、BERT等。比如用某种嵌入的方法就会得到“猫”这个词的300维的词向量。

词嵌入(Word Embedding)

词嵌入本质是在说嵌入的过程和结果。所以Word2Vector、BERT、GloVe等都是词嵌入的实现过程。所以常常会看见“使用BERT来做词嵌入,生成猫这个词的300维向量”

综合两个概念再来看Emebdding过程,可以看出Embedding是一个更广的概念,是一个将多种格式的信息统一化的过程。做Embedding是为了让计算机先把人类能获取到的信息(文字、图片、视频、音频等)“读”到计算机中,再将词语、词语之间的关系传递到“大脑”(比如LLM)中进行学习或者计算反馈。

能干什么?

这个问题其实很多文章都说的比较到位,无论是在W2V处理文字还是CNN卷积图像的时候,其实都是在提取特征、捕捉含义的同时降低维度。

  1. 表示文本特征:文本原本是由字符组成的,直接使用这种形式进行计算会非常复杂且效率低下。通过Embedding技术,可以将文本转换为固定长度的向量,简化计算。
  2. 捕捉语义信息:Embedding不仅可以表示词语本身,还能捕捉到词语之间的语义关系,比如“国王-男性+女性=女王”。这种语义上的计算在原始文本中是无法直接实现的。
  3. 降维处理:原始文本可能非常高维(如每个词一个独热向量),Embedding可以将其降维到一个相对低维的空间,减少计算量。

Embedding的大概过程:

这点上我并没找到OpenAI的ADA和Text-Embedding-3是如何训练的,但是无论是BERT还是W2V,其实Embedding产生的词向量其实只是“副产物”。 这些模型本质上词概率模型,预测下一个词。而Embedding的向量其实包含在训练完的模型上最后输出的隐藏层的全中矩阵中。在状态矩阵中会为每个Token生成一个固定维度的表示。

  1. 训练模型:常见的训练Embedding的方法包括Word2Vec、GloVe和BERT等。这些模型通过大规模的文本数据进行训练,学习词语在不同上下文中的出现频率和相对位置,从而获得每个词语的向量表示。
  2. 向量化:通过训练好的模型,根据训练结果的权限矩阵,将输入文本的每个词或整个句子转换为向量。例如,"猫"可能被表示为一个300维的向量。

举两个例子:

假设有两句话:“我喜欢看电影”和“我爱看电影”, Token化之后其实变成了形似 [“我”,“喜欢”, “看”, “电影” ], [“我”,“喜欢”, “爱”, “电影” ]的两个数组。 通过Embedding模型,按照Token数组从隐藏层的全中数组中提取出向量进行组合计算,Embedding它们会被转换成两个非常接近的句子向量。 因为“喜欢”和“爱”在语义上是相似的词语,Embedding也捕捉到了这种关系。

总体来说,文本Embedding是自然语言处理中的一种基础技术,它将复杂的文本数据转换为机器易于处理的向量形式,同时保留了文本中的语义信息。

如何系统的去学习AI大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

全套 《LLM大模型入门+进阶学习资源包↓↓↓ 获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

  • 18
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
知識圖譜(Knowledge Graph, KG)和詞嵌入(Word Embedding)都是在自然語言處理中常用的技术,它们各有优势: **知識圖譜的优势**: 1. **結構化信息**:知識圖譜是一个由实体(Entity)、属性(Property)和关系(Relationship)构成的网络,能提供直接的、有组织的信息,便于查询和推理。 2. **常识推理**:知识圖谱包含了丰富的背景知识,能够支持基于规则或逻辑的复杂推理,对于理解上下文和回答开放性问题有帮助。 3. **可解释性**:由于是显式表示,知识圖谱的关系可以直接查看和理解,提高了模型决策的透明度。 4. **实体链接**:知识圖谱中的实体通常有统一标识,有助于不同数据源之间的关联和融合。 **詞嵌入的优势**: 1. **稠密表示**:词嵌入将词语映射到低维向量空间,捕捉了词语之间的语义相似性和语法关系,可用于计算相似度或执行简单的自然语言处理任务。 2. **大规模处理**:通过预训练,词嵌入可以在大量文本数据上学习,无需显式的领域知识。 3. **灵活性**:词嵌入适用于多种下游任务,如文本分类、情感分析和机器翻译,只需简单的调整即可适应新的应用场景。 4. **无监督学习**:词嵌入通常是无监督学习的产物,无需标注的数据就可以进行学习。 **两者的比较**: - 知识圖譜更侧重于领域知识和概念性的连接,适合于需要深度领域理解和推理的场景。 - 词嵌入则更多地关注文本数据中的局部语义,常用于快速解决日常NLP任务,但对抽象概念的理解可能不如KG深入。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值