视觉SLAM开源算法ORB-SLAM3 原理与代码解析

该博客探讨了共视图CovisibilityGraph中的边权处理,包括EssentialGraph和SpanningTree方法,以及地图集Atlases中的数据关联策略。着重介绍了EPnP算法、极线矫正技术、不同相机模型的特点,以及如何通过时空一致性进行定位。此外,讨论了准确性、鲁棒性和实时性在特征跟踪和特定场景下的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

主讲人:刘国庆

地图点: P W P_W PW

Covisibility Graph共视图中的连接权重,边权
Essential Graph本质图:保留共视图中边权大于某阈值的边
Spanning Tree:只保留权重最大的连接边

Altas(地图集)

数据关联(Data Association)
短期数据关联、中期数据关联、长期数据关联、多地图关联

EPnP算法中有一个假设是相机模型需要是针孔模型。

极线矫正对双目安装要求高。

鱼眼相机看得更广,长焦距相机看得更远。

重叠区域,无重叠区域。

重投影误差,像素,投影函数 π ( ⋅ ) \pi(\cdot) π()

仅视觉的IMU初始化 最大后验估计
后验 p ( x ∣ y ) p(x|y) p(xy) ≈ \approx 似然 p ( y ∣ x ) p(y|x) p(yx) ⋅ \cdot 先验 p ( x ) p(x) p(x)

时空一致性

重力向量 g b g^b gb的roll角和pitch角小于某阈值。

回环:与本地图
地图合并:与其它地图

ORB-SLAM3加入了VI-SLAM的大家庭。
多地图机制有利于跟踪失败之后提供准确的定位。

提问

准确性,鲁棒性,实时性

Feature tracking is performed with Lucas-Kanade tracker, being slightly more robust than descriptor matching.

面对特定场景去做一些修改。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YMWM_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值