摘要
高精(HD)语义地图对于在城市环境中行驶的自动驾驶汽车至关重要。传统的离线高精地图是通过劳动密集型的手动标注创建的,不仅成本高昂,而且无法及时更新。最近,研究人员提出根据在线传感器观测来推断局部地图;然而,这种方法受到传感器感知范围的限制,并且容易受到遮挡。在这项工作中,我们提出了神经地图先验(NMP),一种全局地图的神经表示,有助于自动更新全局地图并提高局部地图推理性能。为了将强地图先验纳入局部地图推理,我们采用交叉注意力来动态捕捉当前特征和先验特征之间的相关性。为了先更新全局神经地图先验,我们使用基于学习的融合模块来引导网络融合以前遍历的特征。这种设计使得网络能够在连续的在线地图预测过程中预先捕获全局神经地图先验。在nuScenes数据集上的实验结果表明,我们的框架与各种地图分割和检测架构高度兼容,并且显著增强了地图预测性能,即使在恶劣的天气条件下和更长的时间范围内也是如此。据我们所知,这是第一个基于学习的预先构建全局地图先验的系统。
1 介绍
自动驾驶汽车需要高精(HD)语义地图来准确预测其他车辆的未来轨迹并安全行驶在城市街道上。然而,大多数自动驾驶汽车依赖于劳动密集型且昂贵的预先标注的离线高精地图,这些地图是通过复杂的流程构建的,涉及使用测绘车辆进行激光雷达扫描、全局点云对齐和手动地图元素标注。这些离线地图解决方案虽然精度较高,但是可扩展性有限,不支持路况发生变化时的及时更新。因此,自动驾驶汽车可能会依赖过时的地图,对驾驶安全产生负面影响。最近的研究探索了使用车载传感器观测数据(例如相机图像和LiDAR点云)学习高精语义地图的替代方法。这些方法通常使用深度学习技术来实时推断