【路径规划】基于前向动态规划算法在地形上找到最佳路径(Matlab代码实现)

该文探讨了一种使用前向动态规划算法在复杂地形上寻找汽车最佳路径的方法。通过定义以高度差为代价函数,确保路径避免上升且尽量减少旅行时间。提供的Matlab代码实现了这一算法,能够可视化路径和地形,有助于理解和应用该技术。
摘要由CSDN通过智能技术生成
👨‍🎓 个人主页: 研学社的博客
💥 💥 💞 💞 欢迎来到本博客 ❤️ ❤️ 💥 💥

🏆 博主优势: 🌞 🌞 🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

座右铭:行百里者,半于九十。

📋 📋 📋 本文目录如下: 🎁 🎁 🎁
目录
💥1 概述
📚2 运行结果
🎉3 参考文献
🌈4 Matlab代码实现

💥1 概述

汽车必须尽可能靠近目标坐标。旅行时间应尽可能短。汽车一次只能在八个方向上移动一步:左、右、上、下、左上、左下、右上、右下。

成本函数定义为高度差,它始终为正数。在行驶过程中,汽车必须避免爬升轨迹。但是,下降轨迹对汽车也没有好处。因此,下降轨迹并不比平坦轨迹更可取。

【路径规划】基于前向动态规划算法在地形上找到最佳路径,并用Matlab代码实现。

📚2 运行结果

部分代码:

function visualizePath(T, optimalPath)

% Visualize the path on given terrain T.

%

% -------------------------------------------------------------------------

[m, n] = size(T);

l = length(optimalPath);

% Convert back the node cardinal number to the corresponding xyz coordinate.

x = zeros(1, l);

y = zeros(1, l);

z = zeros(1, l);

for i = 1 : l

x(i) = mod(optimalPath(i) - 1, n) + 1;

y(i) = abs((optimalPath(i) - 1 - mod(optimalPath(i) - 1, n)) / n) + 1;

z(i) = 1.0 + T(y(i), x(i));

end

% Draw the optimal path as line.

plot3(x, y, z, 'r', 'LineWidth', 2)

% Draw asterisk symbol (*) at destination nodes.

plot3(x(l), y(l), z(l), '*m', 'LineWidth', 4)

function visualizeTerrain(T)

% Visualize the terrain.

%

% Don't forget to hold the figure when you want to visualize the optimal

% path using visualizePath function.

% -------------------------------------------------------------------------

[m, n] = size(T);

[X,Y] = meshgrid(1 : n, 1 : m);

surf(X, Y, T(1 : m, 1 : n));

end

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]Auralius Manurung (2023). Finding an optimal path on the terrain

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值