【改进粒子群优化算法】自适应惯性权重粒子群算法(Matlab代码实现)

文章介绍了基本粒子群优化算法(BPSO)原理,强调了惯性权重在算法性能中的重要性。提出了一种动态调整惯性权重的策略,以平衡搜索范围和收敛速度。通过Matlab代码展示了算法的实现过程,并提供了部分初始化和更新步骤。
摘要由CSDN通过智能技术生成

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

1.1 基本粒子群优化算法

1.2 改进粒子群算法 

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

文献来源:

1.1 基本粒子群优化算法

基本粒子群算法(BPSO)中,每个优化问题的解都可以看作粒子在搜索空间中的位置,粒子通过飞

行速度决定它们的搜索方向和搜索范围,粒子群通过追随当前群体的最优粒子和自身经历的个体最优位置,调节其飞行速度,在解空间中搜索最优解。粒子群的寻优过程可描述如下:随机初始化粒

子群通过迭代更新群体的速度和位置,在搜索空间中搜寻最优值;每次迭代中,粒子跟踪个体极值和全局极值,利用个体极值和全局极值的信息来调整自身的速度,并以此速度飞行,更新粒子位置。

粒子群第k+1次迭代的更新公式为:

1.2 改进粒子群算法 

惯性权重处理。由式(2)可看出,惯性权重w对 PSO 算法的优化性能影响很大。研究表明,

较大的w值有利于跳出局部最优,而较小的w有利于加速收敛。文献[13]提出了单一线性化调整w的策略:随迭代次数的增加而线性减少w,其经验值为[0.9,0.4]。但若采用线性减少w的调整策略,会使得结果不稳定,算法易陷入局部最优。而且,即使能够跳出局部最优,其收敛速度也非常缓慢。原因是单一线性w调整策略采用了统一的权重变化率,使得粒子在整个搜索过程中没有明显差异。因此,本文从收敛速度和搜索范围上对 PSO 进行改进,采用动态改变惯性权重的策略,使得:

a k根据所计算的适应度函数值进行变化,使得传统上随着搜索过程线性减小的w变成随搜索位置的变化而动态改变的w k。w k中充分利用了目标函数的信息,使得搜索方向的精确度得到了启发性加强。

📚2 运行结果

部分代码:

%% PSO Parameters 
CostFunction=@(x) CostFun(x);        % Cost Function
w=1;            % Inertia Weight
wdamp=0.99;     % Inertia Weight Damping Ratio
c1=1.5;         % Personal Learning Coefficient
c2=2.0;         % Global Learning Coefficient
VarSize=[1 nVar];   % Size of Decision Variables Matrix
% Velocity Limits
VelMax=0.1*(VarMax-VarMin);
VelMin=-VelMax;

%% Initialization

empty_particle.Position=[];
empty_particle.Cost=[];
empty_particle.Velocity=[];
empty_particle.Best.Position=[];
empty_particle.Best.Cost=[];

particle=repmat(empty_particle,nPop,1);

GlobalBest.Cost=inf;

for i=1:nPop
    
    % Initialize Position
    particle(i).Position=unifrnd(VarMin,VarMax,VarSize);
    
    % Initialize Velocity
    particle(i).Velocity=zeros(VarSize);
    
    % Evaluation
    particle(i).Cost=CostFunction(particle(i).Position);
    
    % Update Personal Best
    particle(i).Best.Position=particle(i).Position;
    particle(i).Best.Cost=particle(i).Cost;
  

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]李国庆,陈厚合.改进粒子群优化算法的概率可用输电能力研究[J].中国电机工程学报,2006(24):18-23.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值