💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
为了存储整个高辐照度期间产生的多余功率,或者为了保持稳定的电力供应以满足低辐照度期间的负载需求,采用了储能系统(ESS)。传统的储能系统由能够存储并向负载提供连续电力的电池组组成。然而,电池的高能量密度使其成为稳定电源的完美选择。然而,从电池提供大量突发电流会降低其使用寿命,因此需要一种更好的解决方案。
在这种情况下,将电池与高功率密度源(如超级电容器)相结合是一种有吸引力的选择。超级电容器具有快速充电和放电能力,能够提供突发瞬态电流。通过将电池和超级电容器组合在一起,可以充分发挥它们各自的优势,确保能量供应的连续性并满足负载的即时需求。
在这种混合储能系统中,电池被设计为实现连续能量的供应。它能够存储大量的电能,并在辐照度较低或夜间时持续为负载提供可靠电力。超级电容器作为辅助能量源,负责提供快速响应和高电流峰值。当负载需要更多电力时,超级电容器会释放储存的能量,满足负载的即时需求。
为了有效管理整个混合储能系统的能源供应和存储,需要一种高效的能源管理技术。该技术可以监测光伏电池的辐照度和电池的充放电状态,并根据需求自动调节能源供应。当辐照度较高时,能源管理系统将优先使用太阳能光伏电池的产生的绿色能源,同时将超级电容器充电。而在辐照度较低或负载需求较高时,能源管理系统将自动调用储存的能量,确保稳定的电力供应。
除了能源管理技术,该系统还需要一套完善的电路控制和保护系统。这些系统能够监测电压、电流和温度等参数,并根据需要对电池和超级电容器进行保护和控制。
独立的光伏电池-超级电容器混合储能系统提供了一种高效、可靠的能源供应解决方案。通过合理调配电池和超级电容器的功能,有效地管理能量供应和存储,该系统为高辐照度和低辐照度期间提供了可靠的电力支持。这对于各种应用领域,包括可再生能源系统、智能电网和移动设备等,都具有重要的意义。
单机光伏电池-超级电容器混合储能系统能量管理研究
一、系统基本原理与结构
-
混合储能系统(HESS)的互补性优势
- 电池(如锂离子电池)提供高能量密度(200-300 Wh/kg),适合持续供电;超级电容器(SC)提供高功率密度(5-10 kW/kg)和快速充放电能力(响应时间<1秒),适用于瞬态功率波动处理。
- 协同场景:在光伏系统中,SC负责应对辐照度突变引起的瞬时功率波动,电池则提供稳定能量输出,降低其充放电循环次数,延长寿命。
-
拓扑结构分类
- 被动式拓扑:电池与SC直接并联,无功率转换器,电流分配依赖自身电化学特性,成本低但无法精确控制。
- 主动式拓扑:通过双向DC/DC变换器连接电池与SC,支持动态功率分配,优化效率(如并联拓扑可减少电池高频电流应力)。
- 半主动式拓扑:仅对电池或SC进行主动控制,成本与性能折中。
-
典型控制架构
- 直流耦合(DC Coupling) :光伏阵列与HESS通过DC/DC变换器连接至直流母线,共用单一逆变器,效率高(>95%),适用于高功率场景。
- 交流耦合(AC Coupling) :光伏与HESS分别通过独立逆变器接入交流母线,灵活性高但效率略低(转换损耗约5-8%)。
- 混合耦合:结合直流与交流方案,支持多模式切换(如直流负载供电或电网交互),实现灵活能源管理。
二、能量管理关键技术指标
-
功率分配效率
- 通过动态调整DC/DC变换器占空比,优化电池与SC的功率分配比例,目标效率需>90%。
-
动态响应速度
- SC需在毫秒级响应功率需求,电池响应时间控制在秒级,确保系统平滑过渡。
-
状态管理(SOC/SOH)
- 电池SOC:控制在20%-80%以延长寿命;SC电压:维持50-90%额定电压范围以保持容量。
-
系统综合效率
- 包括转换损耗、热损耗等,需通过拓扑优化(如减少转换级数)和算法改进(如MPPT+功率分配协同)提升至>85%。
-
循环寿命与经济性
- 混合系统相比单一电池系统可延长电池寿命30-50%,降低维护成本。
三、能量管理策略研究方法
-
基于经验的方法
- 逻辑门限控制:根据SOC阈值切换工作模式(如SC优先处理瞬态功率),简单但适应性差。
- 模糊逻辑控制:通过专家规则处理不确定性,鲁棒性强,但依赖人工经验调参。
-
基于优化的方法
- 模型预测控制(MPC) :预测未来时域功率需求,求解最优分配问题(如最小化电池损耗),实时性要求高。
- 遗传算法(GA) :全局优化目标函数(如成本+寿命),适用于多变量复杂系统。
-
基于工况模式识别
- 根据历史数据分类工况(如晴天/阴天),匹配预设策略,需高精度模式库支持。
-
基于机器学习的方法
- 强化学习(RL) :通过环境交互优化策略,适应随机性负载(如突增光伏输出)。
- 神经网络(ANN) :预测功率需求与设备状态,实现自适应滤波时间常数调整。
四、协同运行优化算法设计
-
直流耦合下的优化
- 动态滤波时间常数:根据SC的SOC调整低通滤波器参数,平衡瞬态与稳态功率分配。
- 滑模控制(SMC) :通过非线性控制抑制母线电压波动,提升抗干扰能力。
-
交流耦合下的优化
- 虚拟同步机(VSG) :模拟同步发电机惯性特性,增强电网频率支撑能力。
- 多目标优化:协调逆变器输出与储能充放电,最小化电网交互波动。
-
混合耦合下的优化
- 模式切换策略:基于实时电价与负载需求,动态选择直流/交流供电路径,最大化经济性。
- 分层协调控制:局部层(虚拟电阻下垂控制)+ 分布式层(通信网络调节),改善电压偏差。
五、挑战与未来研究方向
-
技术挑战
- 随机性负载预测:需提升机器学习模型对光照突变、负载波动的预测精度。
- 多时间尺度协同:秒级(SC)与小时级(电池)响应的无缝衔接仍需算法创新。
-
经济性与标准化
- 降低DC/DC变换器与智能控制硬件成本,推动规模化应用。
- 建立统一测试标准(如IEC 62933),促进技术兼容性。
-
前沿方向
- 数字孪生技术:通过实时仿真优化系统参数,减少物理实验成本。
- 固态电池与SC集成:利用固态电池高安全性+SC高功率密度,构建下一代混合储能。
六、结论
单机光伏-HESS的能量管理系统需深度融合拓扑优化、智能算法与多物理场建模。通过动态功率分配、状态管理与协同控制,系统可在效率、寿命与经济性间取得平衡。未来研究需聚焦随机性工况的实时响应与标准化推广,为可再生能源的高效利用提供关键技术支撑。
📚2 运行结果
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]张巨瑞,吴俊勇,田明杰,等.一种蓄电池和超级电容器混合储能系统及其能量分配策略[J].华北电力技术, 2015(12):5.DOI:10.16308/j.cnki.issn1003-9171.2015.00.014.
[2]修金光,张胜桥.超级电容器蓄电池混合储能系统在航标设备中的应用探索[J].仪表技术, 2016(10):3.DOI:CNKI:SUN:YBJI.0.2016-10-003.
[3]齐保良,孙玉龙.小型风力发电混合储能及能量管理系统[J].电网与清洁能源, 2015(3):7.DOI:CNKI:SUN:SXFD.0.2015-03-018.