欠驱动双足机器人的稳定性分析与控制研究(Matlab代码实现)

      💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

欠驱动双足机器人的稳定性分析与控制研究

1 引言

2 欠驱动双足机器人稳定性分析

2.1 稳定性面临的挑战

2.2 稳定性分析方法

3 欠驱动双足机器人控制策略

3.1 控制架构设计

3.2 控制策略选择

4 仿真与实验验证

4.1 仿真验证

4.2 实验验证

5 结论

📚2 运行结果

🎉3 参考文献 

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

欠驱动双足机器人的稳定性分析与控制研究

摘要:本文围绕欠驱动双足机器人的稳定性分析与控制展开研究。分析了欠驱动双足机器人稳定性面临的挑战,包括动力学复杂性、欠驱动特性、环境不确定性等。提出稳定性分析方法,涵盖基于李雅普诺夫稳定性理论、零力矩点(ZMP)和捕获点(CP)的方法。设计了分层控制架构,包括任务层、运动规划层和执行层,并采用基于模型预测控制(MPC)、强化学习和阻抗控制等控制策略。通过仿真和实验验证了所提方法和控制策略的有效性,结果表明机器人能在不同地形和任务下保持稳定行走,验证了控制策略的适应性和鲁棒性。

关键词:欠驱动双足机器人;稳定性分析;控制策略;李雅普诺夫稳定性理论;零力矩点

1 引言

双足机器人因具有在复杂环境中灵活移动、与人类自然交互等优势,在服务、救援、娱乐等领域具有广泛应用前景。欠驱动双足机器人指驱动器数量少于系统自由度的机器人,具有质量轻、能耗低等优点,更接近人类行走方式,但控制难度更大。稳定性是双足机器人实现实用化的关键,欠驱动特性增加了稳定性分析与控制的复杂性。因此,研究欠驱动双足机器人的稳定性分析与控制方法具有重要意义。

2 欠驱动双足机器人稳定性分析

2.1 稳定性面临的挑战

  • 动力学复杂性:双足机器人是一个高度非线性、强耦合、多变量的动力学系统,其运动涉及多个关节的协调运动,动力学模型复杂,难以精确建模和控制。
  • 欠驱动特性:欠驱动双足机器人的部分自由度没有直接的驱动器控制,需要通过其他驱动关节的协调运动来实现对这些自由度的控制,增加了控制的难度和不确定性。
  • 环境不确定性:双足机器人行走的环境复杂多变,如地面不平整、有障碍物等,这些环境因素会对机器人的稳定性产生干扰,要求机器人具有较强的适应性和鲁棒性。

2.2 稳定性分析方法

  • 基于李雅普诺夫稳定性理论的方法:李雅普诺夫稳定性理论是分析系统稳定性的重要方法,通过构造合适的李雅普诺夫函数,判断系统的稳定性。对于欠驱动双足机器人,可以构造反映机器人能量或状态偏差的李雅普诺夫函数,分析机器人在不同运动状态下的稳定性。
  • 基于零力矩点(ZMP)的方法:ZMP是双足机器人稳定性分析中常用的概念,指地面反作用力的合力作用线与地面接触点的交点。当ZMP位于机器人支撑多边形内时,机器人处于稳定状态。通过实时计算ZMP的位置,可以判断机器人的稳定性,并调整机器人的运动姿态,使ZMP保持在支撑多边形内。
  • 基于捕获点(CP)的方法:捕获点是指机器人在当前状态下,通过调整脚部位置和速度,能够使机器人停止而不摔倒的最远点。CP方法考虑了机器人的动量和能量,能够更准确地评估机器人的稳定性,并为机器人的运动规划提供指导。

3 欠驱动双足机器人控制策略

3.1 控制架构设计

采用分层控制架构,将控制任务分解为不同的层次,分别进行处理。

  • 任务层:根据机器人的任务需求,如行走、转弯、避障等,生成相应的运动指令。
  • 运动规划层:根据任务层的指令,结合机器人的动力学模型和环境信息,规划机器人的运动轨迹和姿态。
  • 执行层:根据运动规划层的结果,控制机器人的各个关节驱动器,实现机器人的实际运动。

3.2 控制策略选择

  • 基于模型预测控制(MPC)的方法:MPC是一种基于模型的最优控制方法,它通过预测系统在未来一段时间内的动态行为,优化控制输入,使系统在满足约束条件的前提下,达到最优性能。对于欠驱动双足机器人,MPC可以考虑机器人的动力学模型、环境约束和稳定性要求,实时优化机器人的运动轨迹和姿态,提高机器人的稳定性和适应性。
  • 基于强化学习的方法:强化学习是一种通过智能体与环境进行交互,学习最优行为策略的方法。对于欠驱动双足机器人,可以通过强化学习算法让机器人在不同的环境中进行试错学习,逐渐掌握保持稳定的行走技能。强化学习方法不需要精确的动力学模型,能够适应复杂多变的环境,但需要大量的训练数据和计算资源。
  • 基于阻抗控制的方法:阻抗控制是一种通过调节机器人与环境之间的相互作用力,实现机器人柔顺运动的方法。对于欠驱动双足机器人,阻抗控制可以使机器人在与地面接触时,根据地面的反作用力自动调整机器人的运动姿态和关节力矩,提高机器人的稳定性和抗干扰能力。

4 仿真与实验验证

4.1 仿真验证

在MATLAB/Simulink等仿真平台上建立欠驱动双足机器人的动力学模型,对所提的稳定性分析方法和控制策略进行仿真验证。通过设置不同的初始条件和外部干扰,观察机器人的运动响应和稳定性表现。仿真结果表明,所提的方法和控制策略能够有效地提高欠驱动双足机器人的稳定性,使机器人在不同地形和任务下都能保持稳定的行走。

4.2 实验验证

搭建欠驱动双足机器人的实验平台,安装传感器和驱动器,实现机器人的实时控制和数据采集。在实验平台上进行实际行走实验,验证所提方法和控制策略的有效性。实验结果表明,机器人能够在实验环境中稳定行走,并且能够适应不同的地形和任务需求,验证了所提方法和控制策略的可行性和实用性。

5 结论

本文对欠驱动双足机器人的稳定性分析与控制进行了研究,提出了基于李雅普诺夫稳定性理论、ZMP和CP的稳定性分析方法,设计了分层控制架构,并采用了MPC、强化学习和阻抗控制等控制策略。通过仿真和实验验证,所提的方法和控制策略能够有效地提高欠驱动双足机器人的稳定性和适应性,为欠驱动双足机器人的实用化奠定了基础。未来的研究可以进一步优化控制算法,提高机器人的运动性能和智能化水平,拓展机器人的应用领域。

📚2 运行结果

部分代码:

%% Impact Model

%Once the robot touches the ground with impact, the joint variables change
[th1d(end),th2d(end),th3d(end)] = impact(th1(end),th2(end),th3(end),th1d(end),th2d(end),th3d(end));


%% Dynamic Model Transfer
clc
close all
tf = 1;
th1_ic2 = [th2(end) th2d(end)];
th1_fc2 = [deg2rad(15) 1];
th2_ic2 = [th1(end) th1d(end)];
th2_fc2 = [deg2rad(-15) 2];
th3_ic2 = [th3(end) th3d(end)];
th3_fc2 = [0 0.5];

coeff1 = motionplanning(th1_ic2,th1_fc2,0,1);
coeff2 = motionplanning(th2_ic2,th2_fc2,0,1);
coeff3 = motionplanning(th3_ic2,th3_fc2,0,1);

t = linspace(0,1,n);

[th1_2,th1d_2,th1dd_2] = motioneval(coeff1,t);
[th2_2,th2d_2,th2dd_2] = motioneval(coeff2,t);
[th3_2,th3d_2,th3dd_2] = motioneval(coeff3,t);

%walk(t,[th1_2' th2_2' th3_2'],r,L,[0 0])
u2 = zeros(length(t),2);
for i = 1:size(t,2)
    [u2(i,2),u2(i,1)] = inversedynamics(L,m,Mh,Mt,r,th1_2(i),th2_2(i),th3_2(i),th1d_2(i),th2d_2(i),th3d_2(i),th1dd_2(i),th2dd_2(i),th3dd_2(i));
end
[A,B2,C,D] = kinematics([th1_2(end) th2_2(end) th3_2(end)],r,L,B1);


%% Third Step
[th1d_2(end),th2d_2(end),th3d_2(end)] = impact(th1_2(end),th2_2(end),th3_2(end),th1d_2(end),th2d_2(end),th3d_2(end));

clc
close all
tf = 1;
th1_ic3 = [th2_2(end) th2d(end)];
th1_fc3 = [deg2rad(15) 1];
th2_ic3 = [th1_2(end) th1d(end)];
th2_fc3 = [deg2rad(-15) 0.5];
th3_ic3 = [th3_2(end) th3d(end)];
th3_fc3 = [deg2rad(0) 0.5];

coeff1 = motionplanning(th1_ic3,th1_fc3,0,1);
coeff2 = motionplanning(th2_ic3,th2_fc3,0,1);
coeff3 = motionplanning(th3_ic3,th3_fc3,0,1);

t = linspace(0,1,n);

[th1_3,th1d_3,th1dd_3] = motioneval(coeff1,t);
[th2_3,th2d_3,th2dd_3] = motioneval(coeff2,t);
[th3_3,th3d_3,th3dd_3] = motioneval(coeff3,t);

%walk(t,[th1_2' th2_2' th3_2'],r,L,[0 0])
u3 = zeros(length(t),2);
for i = 1:size(t,2)
    [u3(i,1),u3(i,2)] = inversedynamics(L,m,Mh,Mt,r,th1_3(i),th2_3(i),th3_3(i),th1d_3(i),th2d_3(i),th3d_3(i),th1dd_3(i),th2dd_3(i),th3dd_3(i));
end
[A,B2,C,D] = kinematics([th1_3(end) th2_3(end) th3_3(end)],r,L,B1);
%% Continuous Motion
close all
walk(t,[th1' th2' th3'],r,L,[0 0])
walk(t,[th1_2' th2_2' th3_2'],r,L,B1)
walk(t,[th1_3' th2_3' th3_3'],r,L,B2)


t2 = linspace(0,3,n*3);
u_1 = [u(:,1);u2(:,1);u3(:,1)]; u_2 = [u(:,2);u2(:,2);u3(:,2)];

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]熊圆圆,潘刚,于玲.欠驱动平面双足机器人变速行走控制[J].控制工程, 2012(S1):4.

[2]绳涛,程思微,王剑,等.欠驱动双足机器人动态步态规划方法研究[J].计算机工程与应用, 2009, 45(6):5.

🌈Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值