通信系统中用于降低峰均功率比的高效二次规划(UQP)研究(Matlab代码实现)

     💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献 

🌈4 Matlab代码、文章下载


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

摘要——本文提出了一种基于单模二次规划(UQP)的增强型峰均功率比(PAPR)降低框架,用于MIMO-OFDM系统。此外,我们还考虑了MIMO-OFDM系统中PAPR降低问题的更一般设置,并提出了一种类似功率法的新型算法,以有效解决相关的UQP问题。所提出的方法可以处理任意的发射序列峰均功率比(PAPR)约束,并且更重要的是,可以用于为这些系统生成恒定模信号。与现有的最先进的PAPR降低方法相比,所提出的算法在收敛速度方面表现出改进。
关键词——多输入多输出(MIMO)、波束成形、峰均功率比(PAPR)、单模二次规划(UQP)、凸优化与非凸优化、恒定模信号设计、正交频分复用(OFDM)

I. 引言
MIMO-OFDM在无线研究领域受到了广泛关注,并已成为下一代高速数据率无线系统最有前景的技术之一。然而,这些系统也继承了OFDM技术的缺点,例如对时间和频率同步误差的敏感性,以及传输OFDM信号的高峰均功率比(PAPR)。特别是,随着天线数量的增加,MIMO-OFDM系统中的高PAPR问题进一步加剧。在接收端,非线性设备(如高功率放大器(HPA)和数模转换器(DAC))的性能可能会因高PAPR而严重退化。例如,为了实现最大效率,希望将HPA的操作区域保持在接近饱和状态,但高PAPR会在通信信道和设备中引入非线性失真,从而导致接收端的误码率急剧增加。因此,开发MIMO-OFDM系统的PAPR降低技术以提高其处理大数据流的效率并进一步降低误码率至关重要。

在OFDM系统中,已有大量关于PAPR降低技术的研究,例如部分传输序列(PTS)、主动星座扩展(ACE)、选择性映射(SLM)等。此外,文献[5]的作者提出了一个MIMO-OFDM系统的联合PAPR降低框架。然而,大多数这些方法都是在单输入单输出(SISO)系统的背景下研究的,其扩展到MIMO系统并不容易适用,而且它们的计算复杂度极高。最近,文献[6]提出了一种新的有前景的预编码PAPR降低方法,称为CP-PTS。在该方法中,每个具有大量子载波的OFDM块被划分为资源块(RB),然后为每个RB的相位分配一个复权重矩阵,并通过最陡下降恒模算法(SDCMA)或交替单位圆CMA(UC-CMA)优化这些预编码权重矩阵,以降低传输OFDM符号的PAPR。一般来说,预编码是降低OFDM系统PAPR的有效方法。此外,为了确保预编码矩阵不会影响系统的误码率(BER)性能,设计预编码矩阵时,权重应位于单位圆上。感兴趣的读者可以参考文献[9]及其引用的文献,以获取有关OFDM信号中PAPR技术的更多信息。

在本文中,我们提出了一种替代[8]中恒定模MIMO-OFDM PAPR降低算法的高效方法。我们首先将OFDM系统中的PAPR降低问题表述为单模二次规划(UQP),然后采用类似功率法的迭代进行所提UQP的局部优化。我们的算法考虑了OFDM方案中的双重PAPR约束场景,并可以与[8]中提出的最先进的SDCMA和UC-CMA算法在收敛速度(即更快收敛)方面进行比较,重点是前者。

V. 结论

在本文中,我们提出了一种用于降低OFDM系统峰均功率比(PAPR)的二次规划(QP)表述,并通过采用类似功率法的迭代方法来解决这一问题。主要结果可以总结如下:

  • 所提出的算法考虑了OFDM系统中的双重PAPR约束场景,能够处理任意的PAPR约束,并且具有良好的收敛速度(即,适用于实时信号处理应用的理想候选方案)。

  • 以引入Nt​个辅助变量为代价(这些变量的最优解可以解析地给出),我们可以为四次代价函数(J1​)和基于ℓ1​-范数的目标函数(公式10)提供一个二次替代方案。采用这种方法为进一步简化问题铺平了道路,因为二次规划(QP)已经被更广泛地研究。

  • 在公式(20)-(22)中讨论的类似功率法的迭代方法之前已被研究,并被证明在目标函数单调变化的情况下能够局部收敛。这种迭代方法可以扩展到M进制字母表或其他类型的结构化信号。

详细文章第4部分下载。

📚2 运行结果

部分代码:

% showResourceMapping(ofdmMod)
ofdmModDim = info(ofdmMod);

numData = ofdmModDim.DataInputSize(1);   % Number of data subcarriers
numSym = ofdmModDim.DataInputSize(2);    % Number of OFDM symbols
numTxAnt = ofdmModDim.DataInputSize(3);  % Number of transmit antennas
%%
%  10 RBs
nframes = 32*4;
data = randi([0 3],nframes*numData,numSym,numTxAnt);
%%
% Apply QPSK modulation
modData = qpskMod(data(:));
modData = reshape(modData,nframes*numData,numSym,numTxAnt);
%%
% Create an error rate counter.
errorRate = comm.ErrorRate;
%%
% Simulate the OFDM system 
A2=[];
B=[];
W=[];
U_svd=struct([]);
for k = 1:nframes

    % Find row indices for kth OFDM frame
    indData = (k-1)*ofdmModDim.DataInputSize(1)+1:k*numData;

    % Generate random OFDM pilot symbols
    pilotData = complex(rand(ofdmModDim.PilotInputSize), ...
        rand(ofdmModDim.PilotInputSize));
    pilotData =reshape(pilotData,2,2);
    % Modulate QPSK symbols using OFDM
    dataOFDM =modData(indData,:,:);
    dataOFDM=reshape(dataOFDM,16,2);
%     dataOFDM=[dataOFDM(1:7,:);pilotData;dataOFDM(8:end,:)];
    B=blkdiag(B,dataOFDM.');
    B1=B;
    chGain=eye(2); 
    
    [ls,sv,rs]=svd(chGain);
     W=[W,rs]; %precoding
     U_svd(k).V=rs;
     U_svd(k).ch=chGain;
     U_svd(k).U=ls; %sovle precoding

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

🌈Matlab代码、文章下载

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值