深入浅出之RoI(Region of Interest:感兴趣区域)

感兴趣区域(Region of Interest, RoI)在计算机视觉和图像处理中,特别是在目标检测、图像分割、以及物体跟踪等任务中,是一个非常重要的概念。RoI指的是图像中我们特别关注的某个区域或对象,这些区域通常包含了我们想要识别、分析或处理的关键信息

在目标检测任务中,RoI通常是通过某种算法(如滑动窗口、选择性搜索、区域提议网络等)在图像中自动检测到的,它们对应于图像中可能的物体位置。这些RoI随后会被输入到后续的卷积神经网络(CNN)或其他机器学习模型中,以进一步判断RoI中是否包含特定类别的物体,以及物体的精确位置和边界。

RoI的选择和提取对于提高模型的性能至关重要。一个准确的RoI可以包含足够的特征信息来识别目标物体,同时减少不必要的背景噪声,从而提高检测的准确率和效率。

在处理RoI时,我们通常会遇到一个问题:由于图像中不同物体的大小和形状可能不同,因此提取到的RoI也可能具有不同的大小和形状。然而,大多数深度学习模型(特别是那些使用全连接层的模型)都需要固定大小的输入。因此,我们需要一种方法来将不同大小的RoI映射到固定大小的特征图上,这就是RoIPooling、RoIAlign等技术出现的原因。

总的来说,RoI是计算机视觉任务中一个非常重要的概念,它允许我们关注图像中的关键区域,并有效地提取和处理这些区域中的信息。通过结合先进的算法和技术,我们可以实现高效、准确的目标检测和图像分割等任务。

RoI Pooling(Region of Interest Pooling)是一种深度学习技术,主要用于目标检测和物体识别等领域,旨在从不同尺度和不同大小的图像中提取出固定大小的特征表示。其原理可以归纳为以下几个步骤:

一. ROI选择与映射

  • ROI定义:ROI(Region of Interest)是指图像中感兴趣的区域,这些区域通常是目标检测或物体识别任务中检测到的物体或场景中的特定部分。
  • 映射到特征图:首先,将每个ROI从原始图像映射到对应的特征图上。这通常通过计算ROI坐标与特征图尺寸的比例关系来实现,即将ROI的坐标除以原始图像与特征图之间的尺度比例,从而得到特征图上的ROI坐标。

二. ROI区域划分

  • 固定大小划分:将映射到特征图上的每个ROI区域划分为固定数量的子区域(或称为“bins”或“sections”)。这些子区域的数量和大小由RoI Pooling层的输出尺寸决定。
  • 非均匀划分处理:如果ROI的尺寸无法被均匀划分为指定数量的子区域,则可能需要采用向上取整或向下取整的策略来确定每个子区域的实际大小。

三. 池化操作

  • 池化方式:对每个子区域执行池化操作,常用的池化方式是最大池化(Max Pooling),即取子区域内所有像素值的最大值作为该子区域的代表值。
  • 特征提取:通过池化操作,从每个子区域中提取出最具代表性的特征,从而得到固定大小的特征图。

四、 ROI Pooling目的

       由于RoI是由各种大小宽高不同的Anchors经过偏移修正、筛选等过程生成的,因此其大小不一且带有浮点数,然而后续相连的全连接网络要求输入特征大小维度固定,这就需要有一个模块,能够把各种维度不同的RoI变换到维度相同的特征,以满足后续全连接网络的要求,于是RoI Pooling就产生了。

五、ROI Pooling重要性

ROI Pooling(Region of Interest Pooling)在目标检测和物体识别等领域中之所以重要,主要是因为以下几个原因:

  1. 适应不同尺寸的输入:在目标检测任务中,输入图像中的目标物体可能具有不同的尺寸和比例。由于深度学习模型,特别是卷积神经网络(CNN),通常需要固定大小的输入,因此直接处理这些具有不同尺寸的ROI是不现实的。ROI Pooling通过将这些ROI映射到特征图的相应区域,并提取固定大小的特征表示,使得模型能够处理任意尺寸的输入。

  2. 特征提取的鲁棒性:ROI Pooling通过池化操作(如最大池化)提取每个子区域内的代表性特征。这种操作有助于减少噪声和冗余信息,同时保留关键的特征信息。因此,即使ROI的尺寸和位置有所变化,通过ROI Pooling提取的特征也能保持相对稳定,提高了模型对目标物体的鲁棒性。

  3. 计算效率:在目标检测任务中,通常需要处理大量的候选ROI。如果直接对每个ROI进行独立的特征提取,将会导致巨大的计算量。ROI Pooling通过将ROI映射到特征图的共享区域,并对这些区域进行统一的池化操作,显著降低了计算成本。此外,由于ROI Pooling提取的是固定大小的特征表示,这些特征可以直接用于后续的分类和回归任务,进一步提高了计算效率。

  4. 与后续网络层的兼容性:在深度学习模型中,ROI Pooling层通常位于卷积层和全连接层之间。由于全连接层需要固定大小的输入,而卷积层输出的特征图大小可能因输入图像尺寸的不同而变化,因此ROI Pooling层起到了桥梁的作用。它将不同尺寸的ROI转换为固定大小的特征表示,使得这些特征能够顺利传递给后续的全连接层或其他类型的网络层。

  5. 提升模型性能:ROI Pooling通过有效地提取和表示ROI中的特征,为模型提供了更加丰富的信息。这些信息有助于模型更准确地识别和定位目标物体,从而提高了模型的性能。在目标检测和物体识别任务中,ROI Pooling已经成为一种广泛使用的技术,并在许多先进的模型中发挥了重要作用。 

综上所述,ROI Pooling在目标检测和物体识别等领域中之所以重要,是因为它能够适应不同尺寸的输入、提取鲁棒的特征表示、提高计算效率、与后续网络层兼容以及提升模型性能。

六、ROI Pooling实现过程 

在此我们举一个例子来讲解ROI Pooling算法的思想,假设当前RoI大小为332×332,使用VGGNet的全连接层,其所需的特征向量维度为512×7×7,由于目前的特征图通道数为512, Pooling的过程就是如何获得7×7大小区域的特征。 

RoI Pooling的实现过程如下图所示,假设当前的RoI为图中左侧图像的边框,大小为332×332,为了得到这个RoI的特征图,首先需要将该区域映射到全图的特征图上,由于下采样率为16,因此该区域在特征图上的坐标直接除以16并取整,而对应的大小为332/16=20.75。在此,RoI Pooling的做法是直接将浮点数量化为整数,取整为20×20,也就得到了该RoI的特征,即图中第3步的边框。

下一步还要将该20×20区域处理为7×7的特征,然而20/7≈2.857,再次出现浮点数,RoI Pooling的做法是再次量化取整,将2.857取整为2,然后以2为步长从左上角开始选取出7×7的区域,这样每个小方格在特征图上都对应2×2的大小,如图中第4步所示。
最后,取每个小方格内的最大特征值,作为这个小方格的输出,最终实现了7×7的输出,也完成了池化的过程,如图中第5步所示。
从实现过程中可以看到,RoI本来对应于20.75×20.75的特征图区域,最后只取了14×14的区域,因此RoI Pooling算法虽然简单,但量化取整带来的偏差势必会影响网络,尤其是回归物体位置的准确率。

七、RoI Align实现过程

RoI Align的思想是使用双线性插值获得坐标为浮点数的点的值,主要过程如图4.10所示,依然将RoI对应到特征图上,但坐标与大小都保留着浮点数,大小为20.75×20.75,不做量化。下图 RoI Align的实现过程示例接下来,将特征图上的20.75×20.75大小均匀分成7×7方格的大小,中间的点依 然保留浮点数。在此选择其中2×2方格为例,如图4.11所示,在每一个小方格内的特定位置选取4个采样点进行特征采样,如图4.11中每个小方格选择了4个小黑点,然后对这4个黑点的值选择最大值,作为这个方格最终的特征。这4个小黑点的位置与值该如何计算呢?

RoI Align双线性插值与池化示例 

对于黑点的位置,可以将小方格平均分成2×2的4份,然后这4份更小单元的中心点可以作为小黑点的位置。

至于如何计算这4个小黑点的值,RoI Align使用了双线性插值的方法。小黑点周围会有特征图上的4个特征点,利用这4个特征点双线性插值出该黑点的值。

由于Align算法最大可能地保留了原始区域的特征,因此Align算法对检测性能有显著的提升,尤其是对于受RoI Pooling影响大的情形,如本身特征区域较小的小物体,改善更为明显。

五. RoIPooling、RoIAlign 和 RoIWarp比较

RoIPooling、RoIAlign 和 RoIWarp 是深度学习中目标检测和图像分割任务中常用的技术,主要用于处理不同大小的感兴趣区域(Region of Interest, RoI)并将其映射到固定大小的特征图上,以便于后续的网络处理。以下是这三种技术的详细解释:

5.1. RoIPooling

定义与工作原理
RoIPooling(Region of Interest Pooling)是一种在卷积神经网络中使用的技术,它可以将不同大小的RoI映射到相同大小的特征映射上。具体操作是将RoI划分为H×W的网格,并在每个网格上执行最大池化(Max Pooling)或平均池化(Average Pooling)操作,使每个网格映射到相应的输出单元。

步骤

  1. 计算RoI相对于输入特征映射的比例因子。
  2. 将RoI映射到输入特征映射上,并进行量化取整。
  3. 将RoI划分为H×W的网格。
  4. 对每个网格执行池化操作,得到固定大小的特征图

优缺点
优点是可以将不同大小的RoI映射到相同大小的特征映射上,方便后续处理。但缺点是量化取整过程中会引入额外的数据或丢失部分数据,导致信息偏差。

5.2. RoIAlign

定义与工作原理
RoIAlign(Region of Interest Align)是为了解决RoIPooling中的量化问题而提出的。RoIAlign不再对RoI进行量化取整,而是使用双线性插值(Bilinear Interpolation)来计算每个网格中对应点的值,从而得到更加细腻和合理的特征图。

步骤

  1. 将RoI划分为H×W的网格,但每个网格的边界不再量化取整
  2. 在每个网格内,根据网格的坐标和小数部分,使用双线性插值计算该网格对应点的值。
  3. 对每个网格执行池化操作,得到固定大小的特征图。

优点
RoIAlign通过双线性插值避免了RoIPooling中的量化误差,提高了特征图的精度和模型的性能。

5.3. RoIWarp

定义与工作原理
RoIWarp(Region of Interest Warp)是一种较少提及的技术,其基本原理结合了RoIPooling和RoIAlign的特点。RoIWarp首先对RoI进行量化(类似于RoIPooling),然后再对量化后的RoI进行插值(类似于RoIAlign),以得到固定大小的特征图。然而,由于RoIAlign已经能够很好地解决RoIPooling中的量化问题,因此RoIWarp在实际应用中并不常见。

总结
RoIPooling、RoIAlign和RoIWarp都是处理RoI并映射到固定大小特征图的技术。RoIPooling简单易实现但存在量化误差;RoIAlign通过双线性插值避免了量化误差,提高了精度;而RoIWarp则结合了两者的特点但在实际应用中较少使用。在深度学习中,特别是在目标检测和图像分割等任务中,RoIAlign因其更高的精度而更受青睐。

六、pytorch实现

 roi_pooling.py


class RoIPoolFunction(Function):
    def __init__(ctx, pooled_height, pooled_width, spatial_scale):
        ctx.pooled_width = pooled_width 	# 池化后特征图的高,数值为7
        ctx.pooled_height = pooled_height	# 池化后特征图的宽,数值为7
        ctx.spatial_scale = spatial_scale	# 下采样倍数,数值为1/16
        ctx.feature_size = None	

    def forward(ctx, features, rois): 
        ctx.feature_size = features.size()	# 特征图大小,(batch, 512,37,50)           
        batch_size, num_channels, data_height, data_width = ctx.feature_size
        num_rois = rois.size(0)		# RoI数量,数值为256
        output = features.new(num_rois, num_channels, ctx.pooled_height, ctx.pooled_width).zero_() 	# shape(256, 512, 7, 7)
        ctx.argmax = features.new(num_rois, num_channels, ctx.pooled_height, ctx.pooled_width).zero_().int()	# shape(256, 512, 7, 7)
        ctx.rois = rois
        if not features.is_cuda:
            _features = features.permute(0, 2, 3, 1)
            roi_pooling.roi_pooling_forward(ctx.pooled_height, ctx.pooled_width, ctx.spatial_scale,
                                            _features, rois, output)
        else:
            roi_pooling.roi_pooling_forward_cuda(ctx.pooled_height, ctx.pooled_width, ctx.spatial_scale,
                                                 features, rois, output, ctx.argmax)

        return output

    def backward(ctx, grad_output):
        assert(ctx.feature_size is not None and grad_output.is_cuda)
        batch_size, num_channels, data_height, data_width = ctx.feature_size
        grad_input = grad_output.new(batch_size, num_channels, data_height, data_width).zero_()

        roi_pooling.roi_pooling_backward_cuda(ctx.pooled_height, ctx.pooled_width, ctx.spatial_scale,
                                              grad_output, ctx.rois, grad_input, ctx.argmax)

        return grad_input, None



class _RoIPooling(Module):
    def __init__(self, pooled_height, pooled_width, spatial_scale):
        super(_RoIPooling, self).__init__()

        self.pooled_width = int(pooled_width)	# 池化后特征图的高,数值为7
        self.pooled_height = int(pooled_height)	# 池化后特征图的宽,数值为7
        self.spatial_scale = float(spatial_scale)	# 下采样倍数,数值为1/16

    def forward(self, features, rois):
    	"""
		调用RoI池化
		features:特征提取器提取出来的特征图,shape(batch, 512,37,50)
		RoI:最终候选区域,shape(batch, 256, 5)
		
		return:池化到相同维度的特征,shape(batch, 256, 512, 7, 7)
		"""
        return RoIPoolFunction(self.pooled_height, self.pooled_width, self.spatial_scale)(features, rois)

五. 注意事项

  • 量化误差:在将ROI映射到特征图并进行划分的过程中,由于量化操作(如将浮点数坐标量化为整数)的引入,可能会产生一定的误差。这些误差在某些情况下可能会对最终的结果产生影响。
  • 插值方法:为了减小量化误差的影响,一些改进的方法(如RoI Align)采用了更精细的插值方法(如双线性插值)来处理ROI与特征图之间的对应关系。

综上所述,RoI Pooling通过将不同尺度和大小的ROI映射到特征图上,并对其进行固定大小的划分和池化操作,从而提取出固定大小且具有代表性的特征表示。这种技术在目标检测和物体识别等领域中发挥着重要作用。

参考:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值