随着AI热度愈发火热,越来越多的产品在AI的“赋能”下不断革新和进化。
AI技术的飞速发展不仅改变了人们的生活方式,也大大提升了各行各业的生产效率和创新能力。
在此背景下,我们不妨自己动手丰衣足食,搭建一套属于自己的本地的AI ChatBot
?顺便学习下“高大上”的AI技术,亲身体验和把握这股“科技潮流”?
本篇,我们将通过全局的视角来看一下 “基于本地上传的文档进行QA问答”
类似的案例,需要学习哪些知识点以及会用到哪些技术栈。
框架
目前,根据我所了解到的知识,市面上深层次的ChatBot主流实现框架基本都是大同小异。
本地大模型 + LangChain + 前端界面
结合RAG框架:上传本地文件 + 文件切片 + Embedding向量编码 + LLM大语言模型
整体流程图
doc flow 文档处理流程
-
首先,
从本地加载文档
(upload & loader),比如:pdf、txt、csv、md等 从许多不同来源加载文档,LangChain提供了100多种不同的文档加载器。 -
加载完成后,对文档进行处理,
提取文档信息
-
提取完文档信息后,进行
文本切分
- 为什么要切分文本? 因为有时候我们的文档内容比较多,比如一本书,这种情况下不可能一次性去处理,就需要将文本切成一块一块的,分块处理。
- 如何进行合理切分? 我们通常希望将主题相同的文本片段放在一块。例如,Markdown文件是由h1、h2、h3等多级标题组织的,我们可以根据Markdown标题分割文本内容,把标题相同的文本片段组织在一块。借助LangChain的MarkdownHeaderTextSplitter文本切割器实现。
-
文档切割后得到
文本块
-
对切割完成后的文本块进行
Embedding向量编号
Embedding这里我们会用到很多模型,比如可以调用OpenAI的接口(收费),还可以用HuggingFaceHub(免费)等。 -
将所有文本的编码全部存储到
向量数据库
中 例如:Faiss、Pinecone、Chroma、Milvus等。
token flow 用户提问&AI回答
- 用户进行
提问
,输入一个问题 - 对用户输入的问题进行
Embedding
编码 - 将用户输入的向量与数据库中所有的向量进行
相似性计算
,即用户的提问跟数据库里哪些文本的相关性最高 文本召回
,把达到某一个阈值的相关文本全部召回- 将召回的文本结合问题,形成一个
上下文的模板
- 基于上下文模板
向大模型LLM提问
- 获取到我们想要的
答案
优点
这种实现方式有什么好处呢?
- 我们可以让大语言模型在回答问题的时候是基于我们提供的文档范围去回答,减少AI幻觉,避免一本正经的胡说八道。
- 大语言模型可能信息更新不及时,基于我们提供的文档去回答,也解决了信息不及时的问题。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓