文章目录
惯性导航误差传播分析
姿态误差方程
引出:当我们定义欧拉角时,加入是先转航向角,再转俯仰角,最后再转横滚角,从而由n系变换到b系;而当我们已知b系,且已知欧拉角时,就可以反向得到n系,即先转横滚,再转俯仰、最后转航向角;但是因为,已知的这一组欧拉角是由传感器测出的,会有误差,因此你求得的并不是n系(p系
),这样你求得的结果(p系
)会和n系有一个差异,这个差异也可由欧拉角来表示
姿态误差的定义
姿态指示了两个坐标系之间的相对角度关系,当姿态存在偏差时,可将其全部归算到某一个坐标系。例如
计算得到的导航系(p系
)相对于真n 系的失准角定义为姿态误差角,或者描述为:由真n 系转动到与p 系
对齐所对应的三个欧拉角—— Phi角模型
姿态误差方程的推导
速度误差方程的推导
扰动分析的重点就是把式中的计算值写成真值加误差之和的形式
下图整理得到的式子解释如下:
左边是速度投影在n系下的误差的导数,右侧五项分别是:
1.n系下的加速度计测量误差
2.姿态造成的比力的投影的误差
3、4.哥式和向心加速度补偿后的残留误差
5.重力加速度误差
位置误差方程的推导
n系下位置误差的微分方程形式
传感器误差建模
陀螺误差模型
陀螺误差里面的白噪声有正有负,积分后,变成类似于角度上的随机游走
加速度计误差模型
由上图可知,我们在做标定或者初始对准的时候,通过静态测量值来求平均,取平均就是为了把右边式子的白噪声的影响压制下来,因为它有正有负,可以被抵消一部分
对传感器误差进行建模
随机常数、随机游走、一阶高斯马尔科夫过程
传感器误差建模
陀螺和加速度计的零偏及比例因子误差常建模为一阶高斯马尔可夫过程
增广的惯导误差方程
将传感器误差模型带入惯导误差微分方程,得
惯导误差方程的作用
定量的惯导误差传播分析
惯导误差还与载体的动态强相关,对误差做定量分析时需给定载体的轨迹、动态等运动信息。
用作组合导航的系统状态方程
注:在做组合导航时需进行离散化处理,求得状态一步转移矩阵和白噪声的等效离散化处理