声明:本文是深蓝学院 高翔博士主讲的《SLAM理论与实践》的学习笔记。
运动方程中的x,可以用旋转平移(R,t)或者变换矩阵T来表示。
当相机位置姿态估计不准确时需要进行微调。
一般使用梯度进行微调。需要求导。根据倒数的定义求导必须得有加法。例如 u是关于R的函数,对应的倒数为:
平移量有定义好的加法。
但是旋转矩阵没有定义好的加法:相加之后不满足 旋转矩阵的正交性和行列式为1性。
用四元数表示矩阵也没有良好的加法:因为q的行列式要等于1,相加之后不满足。
为了解决这个问题我们引入群。
群
群(Group)是一种集合加上一种运算的代数结构。记集合为A,运算为 · ,那么当运算满足以下性质时,称 (A, · )为群。
容易验证
- 旋转矩阵集合与矩阵乘法构成群,称为旋转矩阵群,也称作特殊正交群(Special Orthogonal Group),SO(2) SO(3)最常见。
- 变换矩阵集合与矩阵乘法构成群,称为变换矩阵群,也称为特殊欧氏群(Special Euclidean Group),如SE(2) SE(3)。
除此之外还有一般线性群GL(n) 指nxn的可逆矩阵,它们对矩阵乘法成群。
群结构保证了在群上的运算具有良好的性质。群论是研究群的各种结构和性质的理论,具体介绍见各抽象代数或近世代数教材。
李群与李代数
李群(Lie Group):具有连续(光滑)性质的群。既是群也是流形。
直观上看,一个刚体能够连续地在空间中运动,故SO(3)和SE(3)都是李群。但是,SO(3)和SE(3)只有定义良好的乘法,没有加法,所以难以进行取极限、求导等操作。
既然没法直接求导,能否做一些近似或者说分析上的求导?
一个流行可以在一个点做出一个切空间。上面可以定义良好加法。可以通过切空间研究流形上的性质。
李代数:与李群对应的一种结构,位于向量空间。通常记作小写的so(3)和se(3)。书中以哥特体突出显示。事实上是李群单位元处的正切空间
下面从旋转矩阵引出李代数:
考虑任意旋转矩阵R,满足正交性 RRT=I R R T = I
令R随时间变化(连续运动),有 R(t)R(t)T