(8-2)基于人工智能的资产定价方法

请大家关注我,本文章粉丝可见,我会一直更新下去,完整代码进QQ群获取:323140750,大家一起进步、学习。

基于人工智能(AI)的资产定价方法是一种使用机器学习和数据分析技术来识别、建模和预测资产价格的方法。与传统的资产定价模型(如CAPM或Fama-French模型)不同,这些方法依赖于大量的数据和复杂的算法来捕捉市场中的非线性、非稳态和非理性行为。

8.2.1  传统资产定价模型的局限性

目前传统资产定价模型如CAPM(Capital Asset Pricing Model)和Fama-French三因子模型等在金融领域的应用广泛,但它们也存在一些局限性,这些局限性限制了它们在描述和解释市场中资产价格和回报行为时的准确性和适用性。以下是传统资产定价模型的一些主要局限性:

  1. 假设理性投资者:传统模型通常基于理性投资者的假设,即投资者在决策中始终做出最优选择。然而,实际市场中存在大量的非理性行为和情感驱动,这些模型无法捕捉。
  2. 忽视信息不对称:这些模型通常假设所有投资者都具有相同的信息,但实际上市场中存在信息不对称,某些投资者可能拥有更多或更好的信息,从而能够获得优势。
  3. 不考虑交易成本:传统模型通常不考虑交易成本,但实际投资涉及到买卖交易,涉及到手续费、滑点等成本,这些成本可能对投资组合的绩效产生重大影响。
  4. 市场不完全:这些模型通常基于市场完全有效的假设,即所有可获得的信息都会迅速反映在资产价格中。然而,实际市场中存在各种限制和摩擦,使市场不完全有效。
  5. 不适用于非股票资产:传统模型主要是为股票市场设计的,不太适用于其他类型的资产,如债券、商品、房地产等。
  6. 单一风险因子:例如CAPM仅考虑了市场风险,而忽视了其他可能影响资产价格和回报的因素。Fama-French模型引入了额外的因子,但仍然有限。
  7. 静态假设:传统模型通常基于静态的假设,即投资者的投资偏好和风险态度在时间内不变。然而,实际中,投资者的偏好和风险态度可能随时间变化。
  8. 无法解释市场异常现象:传统模型往往难以解释市场中的一些异常现象,如泡沫、崩盘、超额波动等。

因此,为了更准确地理解和解释金融市场中的资产价格和回报行为,研究人员和投资者通常会将传统资产定价模型与其他方法结合使用,包括行为金融学、机器学习、宏观经济模型等,以更全面地考虑市场中的复杂性和非理性因素。

8.2.2  机器学习与资产定价

机器学习(Machine Learning,ML)在资产定价领域中的应用越来越受到关注,它可以用来改进现有的资产定价模型,提高预测准确性,同时也可以用来发现新的定价模型和市场规律。在目前的金融领域中,机器学习在资产定价方面的常见应用如下:

  1. 预测资产价格:可以使用机器学习算法来分析大量历史市场数据,包括股票价格、交易量、宏观经济指标等,以建立资产价格的预测模型。例如,回归分析、时间序列分析、神经网络等方法可以用来预测股票或其他资产的未来价格趋势。
  2. 风险管理:可以用机器学习识别潜在的风险因素和市场压力,通过分析大规模数据,可以更好地评估投资组合的风险,并采取相应的风险管理策略。
  3. 非线性关系的捕捉:传统资产定价模型通常基于线性假设,而机器学习模型能够捕捉更复杂的非线性关系,这对于描述市场中的非理性行为和非线性市场动态非常有用。
  4. 特征工程:机器学习可以帮助识别和选择最重要的特征(变量),从而提高模型的预测能力。这对于资产定价模型的构建和优化非常关键。
  5. 集成模型:集成学习方法如随机森林和梯度提升树可以用来将多个机器学习模型组合起来,以提高模型的稳健性和准确性。
  6. 情感分析和新闻文本挖掘:可以用机器学习分析新闻和社交媒体数据,以捕捉市场情绪和事件对资产价格的影响,帮助投资者更好地理解市场参与者的情感和预期。
  7. 强化学习的动态投资组合管理:可以用强化学习算法制定动态投资组合管理策略,根据市场变化来自动调整投资组合的权重。

注意:机器学习模型不是万能的,它们也存在一些挑战和限制。例如,需要大量的数据来训练机器学习模型,数据质量和噪声可能影响模型的性能,模型的解释性较差等。此外,金融市场本身的复杂性和不确定性也增加了机器学习应用的难度。此,在将机器学习引入资产定价领域时,需要谨慎考虑数据、模型选择和评估,同时也需要与传统的金融理论和模型相结合,以充分利用机器学习的优势,并建立稳健的资产定价框架。机器学习与资产定价的结合代表了金融领域不断发展和演进的一部分,有望提高资产价格预测的准确性和投资决策的智能化。

请看下面的实例,功能是功能是使用深度学习模型(MLP)对贵州茅台股票(股票代码为 "600519.SH")的历史回报率数据进行回归分析,然后预测未来回报率。

实例8-2基于深度学习模型的贵州茅台股票回报率预测与趋势分析(源码路径:daima/8/pymao.py

实例文件pymao.py的具体实现流程如下:

  1. 获取贵州茅台股票的历史数据,包括日期和回报率。
  2. 将历史回报率数据准备成PyTorch张量,用于深度学习模型的训练。
  3. 创建一个更深层次的MLP模型,用于回归分析。
  4. 使用Adam优化器和均方误差损失函数进行模型训练。
  5. 划分训练集和测试集,并训练模型。
  6. 评估模型在测试集上的性能,计算测试集均方误差(MSE)。
  7. 使用训练好的模型预测未来回报率,假设预测未来一个月。
  8. 绘制历史回报率趋势图,包括实际历史回报率和预测未来回报率。
  9. 绘制实际回报率与预测回报率的散点图,用于可视化模型的性能。

实例文件pymao.py的具体实现代码如下所示。


plt.rcParams["font.sans-serif"] = ["SimHei"]  # 设置字体
plt.rcParams["axes.unicode_minus"] = False  # 解决图像中的“-”负号的乱码问题

# 设置TuShare的token,需要提前在TuShare官网注册并获取token
token = ""
ts.set_token(token)

# 初始化TuShare接口
pro = ts.pro_api()

# 获取贵州茅台股票数据(股票代码为 "600519.SH")
asset_data = pro.daily(ts_code="600519.SH", start_date="20080101", end_date="20230901")

# 计算每日的回报率
asset_data['log_return'] = np.log(1 + asset_data['pct_chg'] / 100)

# 将数据准备成PyTorch张量
X = torch.tensor(asset_data['log_return'].values[:-1], dtype=torch.float32)
y = torch.tensor(asset_data['log_return'].values[1:], dtype=torch.float32)

# 获取日期列
dates = pd.to_datetime(asset_data['trade_date'].values[1:])

# 定义一个更深层次的MLP模型
class DeepMLP(nn.Module):
    def __init__(self, weight_decay=0.01):  # 添加weight_decay参数用于控制L2正则化强度
        super(DeepMLP, self).__init__()
        self.fc1 = nn.Linear(1, 128)
        self.relu1 = nn.ReLU()
        self.fc2 = nn.Linear(128, 64)
        self.relu2 = nn.ReLU()
        self.fc3 = nn.Linear(64, 32)
        self.relu3 = nn.ReLU()
        self.fc4 = nn.Linear(32, 1)

        self.weight_decay = weight_decay

    def forward(self, x):
        x = self.fc1(x)
        x = self.relu1(x)
        x = self.fc2(x)
        x = self.relu2(x)
        x = self.fc3(x)
        x = self.relu3(x)
        x = self.fc4(x)
        return x

# 创建模型和优化器
model = DeepMLP()
optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=model.weight_decay)  # 在优化器中添加weight_decay参数
criterion = nn.MSELoss()

# 划分训练集和测试集
split = int(0.8 * len(X))
X_train, X_test = X[:split], X[split:]
y_train, y_test = y[:split], y[split:]

# 训练模型
epochs = 1000
for epoch in range(epochs):
    optimizer.zero_grad()
    outputs = model(X_train.unsqueeze(1))
    loss = criterion(outputs, y_train.unsqueeze(1))
    loss.backward()
    optimizer.step()

# 评估模型
model.eval()
with torch.no_grad():
    y_pred = model(X_test.unsqueeze(1))
    test_loss = criterion(y_pred, y_test.unsqueeze(1))
    print(f"测试集均方误差 (MSE): {test_loss:.4f}")

# 使用模型预测未来回报率
model.eval()
with torch.no_grad():
    future_return = model(X[-1].unsqueeze(0))
    print(f"未来回报率预测: {future_return.item():.4f}")

# 绘制历史回报率趋势
plt.figure(figsize=(12, 6))
plt.plot(dates, asset_data['log_return'][1:], label='历史回报率', color='blue')
plt.xlabel('日期')
plt.ylabel('回报率')
plt.title('历史回报率趋势')

# 添加未来回报率预测
last_date = dates[-1]  # 使用 [-1] 获取最后一个日期
future_dates = pd.date_range(start=last_date, periods=30)  # 假设预测未来一个月
future_dates = future_dates[1:]  # 去除第一个日期,因为它是重复的
future_returns = [asset_data['log_return'].values[-1]]  # 初始未来回报率等于最后一个历史回报率

for _ in range(len(future_dates) - 1):
    future_returns.append(future_returns[-1] + future_return.item())  # 使用模型预测的未来回报率更新

plt.plot(future_dates, future_returns, label='未来回报率预测', color='red', linestyle='--')
plt.legend()
plt.grid(True)

# 绘制实际回报率与预测回报率的散点图
plt.figure(figsize=(8, 6))
plt.scatter(y_test.numpy(), y_pred.numpy(), alpha=0.5)
plt.xlabel("实际回报率")
plt.ylabel("预测回报率")
plt.title("实际 vs. 预测回报率")
plt.grid(True)

plt.show()

执行后会输出下面的结果,看起来模型的性能很好,测试集的均方误差 (MSE) 很低,而且未来回报率的预测也接近零。这是一个积极的迹象,表明模型在预测方面表现良好。

测试集均方误差 (MSE): 0.0005

未来回报率预测: 0.0009

本实例执行后还会绘制历史回报率趋势图和实际回报率与预测回报率的散点图,如图8-1所示。

历史回报率趋势图

实际回报率与预测回报率的散点图

图8-1  可视化结果

在上述代码中使用了一个更深层次的MLP(多层感知机)模型和L2正则化功能,具体说明如下:

(1)更深层次的MLP模型

在上述代码中定义了一个名为DeepMLP的深度神经网络模型,该模型包括多个隐藏层和非线性激活函数。这个模型包括以下层:

  1. 一个输入层(nn.Linear(1, 128)):接受一个特征输入,即回报率。这个层将输入的维度从1扩展到128。
  2. 三个隐藏层(nn.Linear(128, 64),nn.Linear(64, 32),nn.Linear(32, 1)):每个隐藏层包括线性变换和ReLU激活函数。这些层逐渐减少了特征的维度。
  3. 每个隐藏层之间都有ReLU激活函数,用于引入非线性。

这种更深层次的模型允许网络学习更复杂的特征表示,以更好地捕获数据中的潜在模式和趋势。相比于浅层模型,深层模型通常能够更好地适应数据和提高预测性能。

(2)L2正则化

L2正则化也称为权重衰减(weight decay),是一种用于降低模型过拟合风险的技术。在代码中,L2正则化通过以下方式应用于模型:

optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=model.weight_decay)

这里的参数weight_decay被设置为模型类DeepMLP中的一个属性,可以控制L2正则化的强度。在Adam优化器中,weight_decay参数告诉优化器要对模型的权重进行L2正则化,以减小权重的大小。这有助于防止模型过度拟合训练数据,提高模型的泛化能力。

因此,通过将L2正则化应用于优化器,可以有效控制模型的复杂度,提高模型的鲁棒性,使其在未见过的数据上表现更好。这对于金融时间序列数据等容易出现过拟合问题的领域尤其有用。

  • 22
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值