(17-8)基于强化学习的自动驾驶系统:调试运行

源码太多,不再介绍太多了。

17.9  调试运行

(1)首先运行文件collect_data_autoencoder.py,在运行时需要使用命令行参数来自定义数据收集的各个方面,例如地图、天气、数据输出等,这些数据可以用于训练自动编码器等深度学习模型。例如通过运行下面的命令,可以在模拟环境中生成与"ClearNoon"天气条件下的自动编码器训练相关的数据,并将生成的数据保存到指定的输出文件夹中。

python collect_data_autoencoder.py --out_folder ..\autoencoderData\ClearNoon --weather ClearNoon

(2)通过上述命令获得了数据后,接下来通过以下命令创建包含完整数据的文件:

python data/create_dataset.py --folder ..\autoencoderData\ClearNoon ..\autoencoderData\HardRainNoon ..\
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值