从零开始学习自动驾驶决策规划深度强化学习实战项目

从零开始学习自动驾驶决策规划深度强化学习实战项目

本课程是为了帮助大家快速入门强化学习和学会应用深度强化学习进行算法的开发。
鉴于网上有许多开源的强化学习理论基础的视频,而且许多项目都是基于gym游戏进行开发的简单项目,并未涉及使用前沿的carla环境等自动驾驶仿真环境进行强化学习开发与讲解,所以本课程着重从模态化的单智能体和多智能体的深度强化学习入手,以实战项目为驱动进行学习,并设立有学习交流社区群,购买后即可加入,一起探讨科研问题。

先说一下,下单前可以尽情了解清楚是否适合自己(包括能否跑carla,具体的效果,想学习的内容,学习目的等等),仔细看博客的介绍和交流清楚问题。下单后不给予退款处理!!!,如果下单进群后还想以自己不适合用等借口要求退款的,请滚开不要浪费各自的时间。社区群是用来学习交流的,不是来和那些奇葩拉扯的。

购买须知:
1.ubuntu版本没有要求,只要能跑conda环境就行,carla版本最好用0.9.8,因为高版本更吃显卡,0.9.8可以满足基本场景搭建需求了。
2.carla可以多版本存在,内存够用就行,不用很死板地认为一个系统只能用一个carla,不知道怎么多版本存在可以学一下。
3.关于工程涉及的场景,目前是定义起点到终点的跟踪RL决策,可以加其他车辆行人,训练过90度弯道和直道,具体可以看b站效果视频。但是注意任何算法都不是万能的,起点和终点不能太远,不然很难训练。另外,已经设置了鬼探头场景,随机车辆行人场景,跟车场景。自动驾驶场景太多了,不可能给大家全部列出来满足所有人需求,但是基本框架搭建了,大家可以自行搭建自己的场景进行训练。
4.奖励函数可以灵活修改,很多参数都可以调参,代码都是灵活的,不是所有东西都是满足开箱即用。
5.目前比较完善的是dqn和ppo算法,sac也还可以(包括deepmdp),另外ddpg算法还没加,更新加,没那么快。
6.视频讲解主要是对学生疑惑的代码逻辑点进行讲解,原理网上太多好教程不想重复。凡是有代码不理解的,都可以交流。视频讲解会不断完善更新,一开始看不懂先别急,先跟着readme搭环境跑起来代码先。
7.不管是多智能体和单智能体,都是在开源代码上修改和指导大家跑通的。每个人具体的需求想法不一样,但是,实战学习,必须学习前人的经验代码,然后在基础上再去改为自己的想法代码,而不是一来就凭空想着如何实现自己的想法。

优势:
1.强化学习基础理论视频很多,但是缺乏具体场景的carla仿真软件实战应用。
2.多模态问题:多模态问题是热点,本项目也涉及多个模态。
3.很多付费课程只有一年期限,本学习社区无期限,直到学员不再接触此行业。
4.很多开源强化学习算法只涉及单智能体,本工程有单智能体和多智能体。
5.学习交流社区可以展开自由的知识讨论,相互学习进步。

期望:
1.集思广益,为大家提供一个科研和工程的学习交流平台。
2.如果需要一对一全程答疑完成毕设或投稿,需要另外谈价。
3.自主开发的工程具备计算机软件著作权和代码版权,禁止转让和倒卖。

下单后,进群学习+项目代码+代码答疑+科研交流+相互进步(如果是毕设需求一对一指导,需要二次付费)。目前套餐分为单智能体和多智能体,具体的内容如下:

单智能体实战应用与科研探讨套餐内容如下:

理论方面的学习交流(网上资料好的很多,不会进行理论录制视频),一般要学习到的基本知识包括:
1.贝尔曼方程和动态规划
2.蒙特卡洛
3.TD误差
4.GAE优势函数
5.基于值函数和基于策略的学习方法的概念和区别
6.on-policy和off-policy

算法方面的学习交流(网上资料好的很多,不会进行理论录制视频),一般要学习到的基本算法包括:
1.DQN
2.AC
3.PPO
4.PG和DDPG
5.SAC

项目代码的学习-本套餐的主要交流点,实战代码和经验分享讲解:
RL在carla上的实战应用示例 (有代码框架,视频还没出)
RL在airsim上的实战应用示例(待更新,比较慢)

注意:单智能体内容相对多智能体简单一些,也偏向于代码实战经验,与网上开源的代码是会有差别的,会指导如何添加自己的场景等。DRL算法涉及的新算法,比如Diffusion Policy等等,这些都可以交流到。

多智能体实战应用与科研探讨套餐内容如下:

一、多智能体强化学习理论和基础算法
3.1 Multi-agent Reinforcement Learning
3.2 Game Theory and Nash Equilibrium
3.3 Value Decomposition
3.4 QMIX, QTRAN 
3.5 Multi-agent Autonomous Driving

二.协作感知与自动驾驶(不涉及rl,是感知相关的,也是多智能体的科研方向)
2.1  协作感知的概念和原理(待更新)
2.2  Vehicle-to-Everything技术
   2.2.1 车路协同
   2.2.2 车车协同
2.3  感知融合
   2.3.1  激光点云融合
   2.3.2  视觉感知融合
   2.3.3  选择通信(待更新)
   2.3.4  多模态融合(待更新)
2.4  协作式端到端自动驾驶

三.项目实战
3.1 基于MARL的交通控制
3.2 协作感知数据集与框架(不涉及rl的多智能体感知算法)
   3.2.1 DAIR-V2X
   3.2.2 OpenCOOD框架
3.3 协作感知应用示例(待更新)
   3.3.1 协作目标检测实战与实验
   3.3.2 协作式端到端自动驾驶实战和实验

在这里插入图片描述
在这里插入图片描述

当然了,以上列表只是参考,会不断更新完善,希望大家可以尽早学习加入,敬请期待。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏融化了这季节

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值