共线方程
共线方程方程


式中:
-
x,y 为 像点的像平面坐标;
-
x0,y0,f 为影像的 内方位元素;
-
XS,YS,ZS 为摄站点的物方空间坐标;
-
XA,YA,ZA 为物方点的物方空间坐标;
-
ai,bi,ci (i = 1,2,3)为影像的 3 个外方位角元素组成的 9 个 方向余弦。 [1]
共线方程推导
如图1所示,
S 为摄影中心,在某一规定的物方空间坐标中其坐标为(
XS,YS,ZS),
A 为任一物方空间点,它的物方空间坐标(
XA,YA,ZA)。
a 为
A 在影像上的构像,相应的像空间坐标和像空间辅助坐标分别为(
x,y,-f)和(
X,Y,Z)。摄影时
S、A、a三点位于一条直线上,那么像点的像空间辅助坐标与物方点物方空间坐标之间有以下关系:
[1]
像空间坐标与像空间辅助坐标有下列关系:

将上式展开为

共线方程方向余弦
设像点
a 在像空间坐标系中的坐标(
x,y,-f),而在像空间辅助坐标系中的坐标为(
X,Y,Z),两者之间的正交变换关系可以用下式表示:

或

式中
R为3X3阶的
正交矩阵,它由9个方向余弦所组成。
[1]
由正交矩阵
RRT=I 的特点,可导出旋转矩阵中9个方向余弦之间有下列关系:
-
同一行(列)的各元素平方和为1;
-
任意两行(列)的对应元素乘积之和为0;
-
旋转矩阵的行列式 |R|=1;
-
每个元素的值等于其代数余子式;
变换前后两坐标轴相应的夹角的余弦
cos | x | y | z |
X | a1 | a2 | a3 |
Y | b1 | b2 | b3 |
Z | c1 | c2 | c3 |
以影像
外方位元素
ψ,ω,κ 系统为例,对于上述两种坐标系之间的转换关系可以这样理解,即像空间坐标系是像空间辅助坐标系(相当于摄影光束的起始位置)依次绕相应的坐标轴旋转
ψ,ω,κ三个角度以后的位置。此时旋转矩阵
R 可表示为:
[1]

共线方程反演公式

则有

共线方程应用
共线方程的主要应用有: