影像传感器尺寸换算(英寸-毫米)

CCD尺寸的说法是参考传统摄像机内的真空摄像管的对角线长短来衡量的,它严格遵守了Optical Format规范,中文译名为光学格式,其数值称为OF值,单位为英寸。因此CCD尺寸的标准OF值计算方法是其实际对角线长度(单位:16mm)也就是说数码相机里的一英寸长度不是工业上的25.4mm,是16mm!!

以1/1.8英寸的CCD作例,这个1/1.8英寸就是计算公式中的OF值,16÷1.8≈8.89mm,这就是该CCD感光核心部分对角线的实际长度了,先阶段佳能A630、A640、索尼N1、三星S800等等都是采用尺寸的CCD传感器。

那么早期的1/2.5英寸的CCD呢,16÷2.5=6.4mm,也就是这块CCD的对角线尺寸只有6.4mm,大多数相机多采用4:3系统(CCD的长宽比),利用勾股定理,就可以求得长、宽边分别是5.12mm和3.84mm了。不如大多手机按键大。1/1.8英寸也就是7.112mm×5.334mm。

转载自:http://blog.sina.com.cn/s/blog_50da9d690100ca30.html

### MQ3气体传感器数值换算方法 对于MQ3气体传感器,其输出电压与空气中酒精浓度之间存在一定的关系。为了将原始ADC读数转换为有意义的气体浓度值,通常需要经过一系列处理过程。 #### 1. 获取校准因子 首先,在无污染环境中测量清洁空气下的电阻R0作为参考值。这一步骤非常重要,因为后续计算都基于此参考值进行调整[^1]。 #### 2. 计算Rs/R0比率 通过读取当前环境条件下传感器电阻Rs,并除以前述获得的标准状态下的阻值R0来得到比例系数Rs/R0。该参数反映了相对于标准条件的变化程度。 #### 3. 应用经验公式 根据不同厂家提供的数据手册或实验测定的经验模型,可以建立Rs/R0与目标气体浓度之间的函数映射关系。一般形式如下: \[ C = a \times (Rs / R0)^b \] 其中\(C\)表示待测物质的质量浓度;而\(a, b\)则是由具体应用场景决定的经验常量。 以下是Python实现上述算法的一个简单例子: ```python import math def calculate_concentration(rs_ratio, calibration_factor=1.0, sensitivity_index=-2.78): """ 将RS/R0比率转化为实际气体浓度 参数: rs_ratio : float - 设备出厂时给定的校正系数,默认设为1.0 sensitivity_index : float - 对应于特定污染物类型的敏感指数 返回: concentration : float - 转化后的质量浓度单位ppm """ # 经验公式的应用 ppm = calibration_factor * pow((rs_ratio), sensitivity_index) return round(ppm, 2) # 假设我们已经得到了一个有效的Rs/R0比率 example_rs_ratio = 0.5 concentration_ppm = calculate_concentration(example_rs_ratio) print(f"The estimated alcohol concentration is {concentration_ppm} ppm.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值