时间序列干货大全

这篇博客汇总了16份关于时间序列分析的PDF资料,覆盖了从基础理论到高级模型,包括Stata、R、ARMA、神经网络等方法。作者提供了详细的总结和评价,特别推荐《TimeSeries analysis and its applicaion with R》和《Analysis of financial time series Tsay》。此外,还分享了一份永久有效的百度网盘链接,方便读者下载学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近花时间整理了一下有关时间序列模型的英文资料,共整理出16个PDF文档,包含了几乎所有的时间序列模型和软件的实践方法,再这里共享给大家: 通过文末的连接可以直接下载

以下是在阅读对比了这些资料后给出的总结和评价,大家可以有选择的阅读所需的内容

  1. Processing Timeseries with Stata Princeton,对用Stata做一个简单的时间序列处理和检验和做了介绍。

  2. Simple timeseries analysis, 简单的时间序列建模方法,包括用已知函数拟合,指数平滑等等;

  3. TimeSeries analysis and its applicaion with R, Roberrt H. Shumway/ David S. Stoffer,这本书是完美的结合了R语言的例子和理论的一本书,其核心要领就是既能用做课堂讲义也能用做业界人士的参考,有大量实际的例子;内容很完善,不仅仅包含了时域分析部分,频域分析和状态空间也包括了,该有的定义都有。

  4. Analysis of financial time series Tsay, 这就是题主苦大仇深的RUEY S.Tsay的金融时间序列分析,它和上一本书的区别主要集中在两个地方,一个是他既没有实用的例子和详实的定义帮人们理解,但他大量的介绍各种模型的变种,更偏向文献综述,另一点是他的5,6章将时间序列模型和期权定阶进行了有机结合,不愧是是芝加哥大学教材。

  5. Introduction to R for timeseries analysis,一个十页纸用R做ARMA模型的小册子。

  6. Multivariate timeseri

时间序列分解是一种将时间序列拆分为潜在模式、趋势、季节性和噪声的技术。在Python中,有几种方法可以进行时间序列分解。一种常用的方法是使用statsmodels库中的seasonal_decompose函数。该函数可以自动进行时间序列的分解,并提供趋势、季节性和残差等组成部分的可视化。***测。使用Prophet库,您可以通过简单的代码实现时间序列分解和预测,并进行可视化展示。您可以参考引用和中提到的教程和示例来了解更多关于在Python中进行时间序列分解的方法和技巧。如果您需要更详细的信息,您可以访问引用中提供的链接,该链接提供了一个关于时间序列预测和分解的详细指南和示例。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [干货 :手把手教你用Python进行时间序列分解和预测](https://blog.csdn.net/Tw6cy6uKyDea86Z/article/details/111350647)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [Python中的时间序列分解](https://blog.csdn.net/m0_46510245/article/details/115997686)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值