【AI学习】 “蛋糕”的启发

YannLeCun的演讲指出无监督学习在大规模AI中的核心地位,人类大脑的大量神经突触和有限的生命时间促使无监督学习的重要性。文章探讨了无监督学习在理解生物感知输入和构建高效模型(如生物眼睛类比的神经网络架构)的应用潜力,以及可能的分布式模型架构设想。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

昨天,因为写报告,在各种搜索资料中,意外的找到了那个“著名的蛋糕”——来自《预测性学习,NIPS 2016》。Yann LeCun 在这个2016年的演讲中,提出了无监督学习作为大规模 AI 模型架构的基础模型。 在这里插入图片描述

LeCun用蛋糕来比喻机器学习,监督学习和强化学习分别比作是蛋糕的糖霜和樱桃,而无监督学习则就是蛋糕本身。我们知道如何得到糖霜和樱桃,但不知道怎样做蛋糕。——七年后,人类终于知道了如何做蛋糕:)
报告中,在著名的蛋糕的前面,还有一页PPT,Yann LeCun说明了思维灵感:
“我们期望机器回答的信息越多,所需的训练样本数量就越大。
大脑有 10^14 的神经突触,而我们的生命只有 10^9 秒。我们拥有的参数的量远超 数据的量。这就激发了一种想法,即由于感知输入(包括本体感觉)是唯一能每秒得到 10^5 个维度的约束的地方,我们必须要做很多的无监督学习。
预测人类提供的标记是不足够的。
预测一个价值函数也不足够”。
在这里插入图片描述

人类的感知输入包括视觉、听觉、触觉、味觉以及嗅觉,这些感知输入帮助人类感知和理解环境中的各种信息和刺激。
怎么理解Yann LeCun的这段话呢?我想,大概是说:人的一生能学习的数据的量级(应该是通过教育这种有意识的学习,类似有监督的数据)远低于大脑的神经元数量,那就意味着更多维度的数据是在无意识中学习的,这些学习就是感知的学习,这种无意识学习就对应于无监督学习。
这让我进一步想:大模型是否有另外一种可能?类似于大脑的架构,视觉、听觉、触觉、味觉以及嗅觉分别对应一个专业大模型,而大脑需要有意识学习的部分作为一个单独的认知模型在中央控制。未来的大模型是否可能是这种架构,一个中央控制的大模型,控制着各种执行特殊任务的专业大模型,形成一个更加复杂的分布式模型架构。相对应的,各个专业大模型,需要更多的广泛的数据,形成基础的功能单元,就像从各种动物到人类,眼睛的结构和功能非常近似,大概绝大部分动物的眼睛都是从同一个祖先的眼睛进化而来。而中央控制模型,更需要高质量的数据,也只有中央控制模型需要类似RLHF的对齐操作。这种架构是否可以简化SFT和RLHF工作,形成新的思路?

之前刷到一篇论文,好像是说,生物的眼睛每秒要处理的数据量极其巨大,对比来说,现在自动驾驶的图像处理模型的数据处理效率是远低于生物的,所以应该考虑一种类似于生物眼睛的神经网络架构。想再看看那个论文,找了半天,死活找不到。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bylander

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值