论文主要内容总结
本文系统探讨了基于大型语言模型(LLM)的基础智能体的最新进展与挑战,提出了一个受大脑启发的模块化框架,整合认知科学、神经科学和计算研究的原理。全文分为四个核心部分:
-
智能体核心组件(Part I):
- 认知模块:分析学习、推理(结构化/非结构化)和规划能力,强调LLM在逻辑推理和任务分解中的作用。
- 记忆系统:借鉴人类记忆分类(感官、短期、长期记忆),讨论记忆的获取、编码、存储和检索机制。
- 世界模型:对比隐式、显式、模拟器驱动等范式,强调预测环境动态的重要性。
- 奖励与情感建模:结合人类奖励机制设计智能体奖励函数,探索情感对决策和交互的影响。
- 感知与行动系统:分析多模态感知(视觉、语言、听觉等)和行动生成,强调工具使用和物理交互的挑战。
-
自我进化机制(Part II):
- 优化空间