ADVANCES AND CHALLENGES IN FOUNDATION AGENTS

论文主要内容总结

本文系统探讨了基于大型语言模型(LLM)的基础智能体的最新进展与挑战,提出了一个受大脑启发的模块化框架,整合认知科学、神经科学和计算研究的原理。全文分为四个核心部分:

  1. 智能体核心组件(Part I)

    • 认知模块:分析学习、推理(结构化/非结构化)和规划能力,强调LLM在逻辑推理和任务分解中的作用。
    • 记忆系统:借鉴人类记忆分类(感官、短期、长期记忆),讨论记忆的获取、编码、存储和检索机制。
    • 世界模型:对比隐式、显式、模拟器驱动等范式,强调预测环境动态的重要性。
    • 奖励与情感建模:结合人类奖励机制设计智能体奖励函数,探索情感对决策和交互的影响。
    • 感知与行动系统:分析多模态感知(视觉、语言、听觉等)和行动生成,强调工具使用和物理交互的挑战。
  2. 自我进化机制(Part II)

    • 优化空间
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值