目录
1.软件版本
matlab2013b
2.本算法理论知识
帧差法
帧差法是最为常用的运动目标检测和分割方法之一,基本原理就是在图像序列相邻两帧采用基于像素的时间差分通过闭值化来提取出图像中的运动区域。首先,将相邻帧图像对应像素值相减得到差分图像,然后对差分图像二值化,在环境亮度变化不大的情况下,如果对应像素值变化小于事先确定的阂值时,可以认为此处为背景像素如果图像区域的像素值变化很大,可以认为这是由于图像中运动物体引起的,将这些区域标记为前景像素,利用标记的像素区域可以确定运动目标在图像中的位置。由于相邻两帧间的时间间隔非常短,用前一帧图像作为当前帧的背景模型具有较好的实时性,其背景不积累,且更新速度快、算法简单、计算量小。算法的不足在于对环境噪声较为敏感

本文对比了四种视频目标跟踪算法:帧差法、背景差分法、光流法和Meanshift。帧差法简单但对噪声敏感;背景差分法利用背景模型检测运动,高斯混合模型是其一;光流法则通过计算像素运动,适用于背景运动情况;Meanshift通过迭代寻找颜色分布的峰点定位目标。每种方法都有其优缺点和适用场景。
订阅专栏 解锁全文
765

被折叠的 条评论
为什么被折叠?



