机器学习/人工智能的笔试面试题目——SVM相关

本文探讨了LR(逻辑回归)和SVM(支持向量机)在分类问题中的联系和区别,包括它们的相似点如线性分类、监督学习和判别式模型,以及在Loss Function、数据依赖性、核函数应用和正则化等方面的差异。此外,还介绍了在处理多分类问题时的策略,并给出了何时选择LR或SVM的建议。
摘要由CSDN通过智能技术生成

目录

1.LR和SVM的联系?

2.LR和SVM的区别

3.LR和SVM什么时候用?

4.LR和SVM如何处理多分类问题?


1.LR和SVM的联系?

1. LR和SVM都是分类算法

普通的LR和SVM算法只能处理二分类问题,当然,通过改进后的LR和SVM都可以用来处理多分类问题(后面会详细解释)。

2. 在不考虑核函数时,两者都是线性分类算法

注意,不考虑核函数时两者都是**线性**分类器。LR、SVM加了核函数后为分别为KLR、KSVM,只不过一般而言采用KSVM较多而KLR用得较少。

3. 两者都属于监督学习算法

4. 两者都是判别式模型

什么是判别式模型?假设给定观测集合X,需要预测的变量集合为Y,那么判别式模型就是直接**对条件概率分布P(Y|X)进行建模**来预测 Y;而生成式模型是指,先对联合概率模型P(X,Y)进行建模,然后在给定观测集合X的情况下,通过计算边缘分布来求解出P(Y|X)。

常见的判别式模型有:LR、SVM、KNN、神经网络、最大熵模型、条件随机场等

常见的生成式模型有:隐马尔科夫模型HMM、朴素贝叶斯、贝叶斯网络、高斯混合模型GMM等
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值