目录
1.LR和SVM的联系?
1. LR和SVM都是分类算法
普通的LR和SVM算法只能处理二分类问题,当然,通过改进后的LR和SVM都可以用来处理多分类问题(后面会详细解释)。
2. 在不考虑核函数时,两者都是线性分类算法
注意,不考虑核函数时两者都是**线性**分类器。LR、SVM加了核函数后为分别为KLR、KSVM,只不过一般而言采用KSVM较多而KLR用得较少。
3. 两者都属于监督学习算法
4. 两者都是判别式模型
什么是判别式模型?假设给定观测集合X,需要预测的变量集合为Y,那么判别式模型就是直接**对条件概率分布P(Y|X)进行建模**来预测 Y;而生成式模型是指,先对联合概率模型P(X,Y)进行建模,然后在给定观测集合X的情况下,通过计算边缘分布来求解出P(Y|X)。
常见的判别式模型有:LR、SVM、KNN、神经网络、最大熵模型、条件随机场等
常见的生成式模型有:隐马尔科夫模型HMM、朴素贝叶斯、贝叶斯网络、高斯混合模型GMM等