目录
一、理论基础
基于5G通信系统的LDPC(Low-Density Parity-Check)编译码误码率研究涉及到通信系统的信道编码和译码技术,主要用于提高系统的可靠性和传输效率。5G通信系统是第五代移动通信系统,旨在提供更高的数据速率、更低的延迟和更好的用户体验。它采用了新的无线技术和编码方案来满足大规模数据传输和连接数的需求。在5G系统中,LDPC编码是一种重要的信道编码技术,用于实现高效的纠错性能。
LDPC编码是一种基于图论的线性块编码技术,通过构建稀疏校验矩阵来实现高效的编码和译码。LDPC码的编码过程是将输入数据与校验矩阵进行矩阵乘法运算得到编码后的输出数据。而LDPC码的译码过程是通过迭代解码算法来纠正传输中产生的错误。
LDPC编码和解码的基本原理如下:
LDPC编码:
-
生成校验矩阵: LDPC编码使用一个稀疏的生成校验矩阵,通常是一个很大的矩阵。这个矩阵的每一行和列代表一个校验位和数据位,其中非零元素的位置很稀疏,因此称为"低密度"。生成校验矩阵的结构对编码的性能和复杂性有很大影响。
-
编码操作: 要对数据进行LDPC编码,首先将待发送的数据位按照生成矩阵进行编码。编码操作实际上是将数据位与生成矩阵的相应行进行异或运算,得到一组校验位。
LDPC解码:
-
译码图构建: 在LDPC解码中,一种常用的方法是通过构建译码图(也称为Tanner图)来进行迭代译码。译码图是一个双分图,由变量节点和校验节点组成,它们之间的连接代表生成矩阵中的非零元素。
-
消息传递: LDPC解码使用消息传递算法,一种常见的方法是使用和最小(sum-product)算法。在每一轮迭代中,变量节点向连接的校验节点传递信息,然后校验节点再将信息传递回变量节点。
-
迭代: LDPC解码是一个迭代的过程,信息在变量节点和校验节点之间传递多轮,直到满足终止条件。通常情况下,迭代的次数是一个可调参数,要在性能和计算复杂性之间进行权衡。
-
硬判决和软判决: 在每轮迭代后,变量节点会更新一组概率值,代表每个数据位为0或1的概率。在解码完成后,可以根据这些概率值进行硬判决(将概率值大于0.5的位判定为1,否则为0)或者软判决(利用概率值作为软信息)。
LDPC编码和解码技术的优点在于其接近信道容量的性能和较低的复杂性。在5G通信系统中,LDPC编码广泛应用于物理层的信道编码和解码,用于提升系统的误码性能,尤其在高信噪比环境下具有较好的性能表现。
LDPC码的编码公式可以表示为:
LDPC码的译码过程可以采用迭代译码算法,其中最常用的是消息传递算法(Sum-Product算法)。假设$\mathbf{r}$为接收到的信号向量,$\mathbf{L}$为初始的似然信息向量。在每次迭代中,通过更新LLR(Log-Likelihood Ratio)信息来逐步纠正错误比特。迭代计算的公式为:
其中,$i$和$j$分别表示校验节点和变量节点的索引,$N(i)$表示与校验节点$i$相连的变量节点集合,$\tanh^{-1}$表示反双曲正切函数。
在5G通信系统中,对于采用LDPC编译码的信道,我们可以通过仿真或理论分析来评估其误码率性能。误码率(BER,Bit Error Rate)是衡量信号传输质量的重要指标,通常用来评估编码器和解码器的性能。
针对LDPC编译码,误码率性能与信噪比(SNR,Signal-to-Noise Ratio)之间的关系可以通过BER曲线来表示。通过不同的SNR值,计算解码输出与原始数据之间的比特错误率,得到BER曲线。
此外,还可以通过解析方法推导LDPC码的误码率性能。一种常用的方法是利用信道容量近似法,通过计算信道容量来估计误码率性能。基于5G通信系统的LDPC编译码误码率研究是5G通信系统中关键的技术领域之一。本文介绍了LDPC编码在5G系统中的应用原理和数学公式,以及误码率性能的分析方法。通过对LDPC编码的研究,可以优化信号传输效率,提高通信系统的可靠性,满足5G通信系统对高速率、低延迟和大连接数的需求。
二、核心程序
............................................................
EbNodB = [0:1:5];
for ij = 1:length(EbNodB)
for k = 1:20
[ij,k]
MaxItrs = 8;
rate_matching = 0;
load base_matrices\NR_1_0_16.txt;
B = NR_1_0_16;
[mb, nb] = size(B);
z = 16;
Slen = sum(B(:)~=-1); %number of non '-1' in B
treg = zeros(max(sum(B~=-1,2)),z); %register storage for minsum
k = (nb - mb)*z;
n = nb*z;
if rate_matching == 1
n = n -2*z;
end
Rate = k/n;
EbNo = 10^(EbNodB(ij)/10);
sigma = sqrt(1/(2*Rate*EbNo));
Nbiterrs = 0; Nblkerrs = 0; Nblocks = 100;
for i = 1 : Nblocks
%msg = randi([0 1],1,k); %generate random message
msg = zeros(1,k); % all-zero msg
%Encoding here
cword = zeros(1,n);
s = 1 - (2 * cword); %BPSK symbols
r = s + sigma * randn(1,n); %AWGN Channel
%puncturing
if rate_matching == 1
r(1:2*z) = 0;
end
%Soft-Decision, iterative message-passing layered decoding here
L = r; % Total Belief
itr = 0; % iteration number
R = zeros(Slen, z); %storage for row processing
while itr < MaxItrs
Ri = 0;
for lyr = 1:mb
ti = 0; % number of non -1 in row = lyr
for col = 1:nb
if B(lyr,col) ~= -1
ti = ti + 1;
Ri = Ri + 1;
%Substraction
L((col-1)*z+1:col*z) = L((col-1)*z+1:col*z) - R(Ri,:);
%Row alignment and store in treg
treg(ti,:) = mul_sh(L((col-1)*z+1:col*z),B(lyr,col));
end
end
%minsum on treg: ti x z
for i1 = 1:z %treg(1:ti,i1)
[min1, pos] = min(abs(treg(:,i1))); %first min
min2 = min(abs(treg([1:pos-1 pos+1:ti],i1))); %second min
S = sign(treg(1:ti,i1));
parity = prod(S);
treg(1:ti,i1) = min1; %absolute value for all
treg(pos,i1) = min2; %absolute value for min1 position
treg(1:ti,i1) = parity * S.*treg(1:ti,i1); %assign signs
end
%column alignment, addition and store in R
Ri = Ri - ti; %reset the storage counter
ti = 0;
for col = 1:nb
if B(lyr,col) ~= -1
Ri= Ri + 1;
ti = ti + 1;
%Column alignment
R(Ri,:) = mul_sh(treg(ti,:), z-B(lyr,col));
%Addition
L((col-1)*z+1:col*z) = L((col-1)*z+1:col*z) + R(Ri,:);
end
end
end
msg_cap = L(1:k) < 0; %decision
itr = itr + 1;
end
Nerrs = sum(msg ~= msg_cap);
if(Nerrs > 0)
Nbiterrs = Nbiterrs + Nerrs;
Nblkerrs = Nblkerrs + 1;
end
end
BER_sim(ij,k) = Nbiterrs/(k*Nblocks);
FER_sim(ij,k) = Nblkerrs/Nblocks;
end
end
figure;
semilogy(EbNodB,mean(BER_sim,2),'b-o');
grid on
xlabel('EbNo');
ylabel('error');
up2175