目录
蚁群优化算法(Ant Colony Optimization, ACO)是一种启发式优化技术,灵感来源于自然界中蚂蚁寻找食物时的集体行为。在机器人路径规划领域,ACO通过模拟蚂蚁在环境中留下信息素并据此探索路径的过程,为机器人寻找从起点到终点的最优路径提供了有效的解决方案。
1. 信息素模型
假设有一个图G=(V,E),其中V 是顶点集(代表机器人可到达的位置),E 是边集(代表位置间的可行路径)。每个边eij∈E 上的信息素浓度记为τij,它反映了蚂蚁经过这条路径的频繁程度,从而影响未来蚂蚁选择该路径的概率。
2. 蚂蚁移动规则
每只蚂蚁在探索路径时,根据以下原则选择下一个顶点vj:
其中:
Pij 是蚂蚁从顶点i 移动到j 的概率。
τij 是边eij 上的信息素浓度。
etaij 是边eij 的启发式信息(如路径长度的倒数,用于引导蚂蚁探索较短路径)。
α 和 β 是控制信息素重要性和启发式信息重要性的参数。
Ni 是顶点 i 的邻接点集合。
3. 信息素更新
信息素的动态更新包括两个过程:蒸发和沉积。
蒸发:信息素随时间自然挥发,模拟现实世界中信息素的自然消失。每步迭代后,所有边上的信息素浓度按比例ρ (挥发因子,0 <ρ < 1)减少:τij←(1−ρ)⋅τij
沉积:蚂蚁在完成一次路径探索后,会在所走过的路径上增加信息素,增强路径的吸引力: τij←τij+Δτij 其中,Δτij 为蚂蚁在路径eij 上的贡献量,通常与蚂蚁找到的路径质量(如总距离的倒数)成正比。
4.算法流程
初始化:设定参数α, β, ρ, 蚂蚁数量m,初始化信息素浓度(通常为小正数)。
构建解:每只蚂蚁按照上述移动规则探索路径,直到所有蚂蚁都完成了从起点到终点的探索。
信息素更新:根据蚂蚁的探索结果更新信息素浓度,先进行全局信息素蒸发,然后根据蚂蚁的路径沉积信息素。
迭代:重复步骤2和3,直到达到预设的迭代次数或找到满意的解。
解的选择:记录并比较每次迭代中所有蚂蚁找到的路径长度,选取最短的作为最终的最优路径。
5.matlab程序
...................................................................
%% 开始迭代
for epoch = 1: epochs
Delta_Tau = zeros(n, n);
for ant = 1: ants
if Distance(epoch, ant)
ROUT = ROUTES{epoch, ant};
TS = length(ROUT) - 1;
Dis_km = Distance(epoch, ant);
for s = 1: TS
x = ROUT(s);
y = ROUT(s + 1);
Delta_Tau(x, y) = Delta_Tau(x, y) + q / Dis_km;
Delta_Tau(y, x) = Delta_Tau(y, x) + q / Dis_km;
end
end
end
Tau = (1 - rho) * Tau + Delta_Tau;
end
%% 绘图
plotif = 1;
if plotif == 1
minDis = zeros(epochs, 1);
for i = 1: epochs
Dis = Distance(i, :);
Nonzero = find(Dis);
PLK = Dis(Nonzero);
minDis(i) = mean(PLK);
end
figure(1);
plot(minDis);
hold on;
grid on;
title('收敛曲线变化趋势');
xlabel('迭代次数');
ylabel('最小路径长度');
figure(2)
axis([0,mm,0,mm]);
for i = 1: mm
for j = 1:mm
if G(i, j) == 1
x1 = j - 1; y1 = mm - i;
x2 = j;y2 = mm - i;
x3 = j;y3 = mm - i + 1;
x4 = j - 1;y4 = mm - i + 1;
fill([x1, x2, x3, x4], [y1, y2, y3, y4],[0.2, 0.2, 0.2]);
hold on;
else
x1 = j - 1; y1 = mm - i;
x2 = j;y2 = mm - i;
x3 = j;y3 = mm - i + 1;
x4 = j - 1;y4 = mm - i + 1;
fill([x1, x2, x3, x4], [y1, y2, y3, y4],[1, 1, 1]);
hold on;
end
end
end
hold on;
title('机器人运动轨迹');
xlabel('坐标x');
ylabel('坐标y');
ROUT = ROUTES{mink, minl};
LENROUT = length(ROUT);
Rx = ROUT;
Ry = ROUT;
for ii = 1: LENROUT
Rx(ii) = mod(ROUT(ii),mm)-0.5;
if Rx(ii) == -0.5
Rx(ii) = mm - 0.5;
end
Ry(ii) = mm + 0.5 - ceil(ROUT(ii) / mm);
end
plot(Rx, Ry,'b','linewidth',2);
end
4126
6.仿真结果
ACO算法在数学上可视为一种元启发式搜索方法,它通过迭代过程不断逼近问题的全局最优解。算法的优化性能依赖于信息素更新策略和参数设置,尤其是参数α 和β 的平衡,决定了算法在探索(exploration)与利用(exploitation)之间的权衡。
为了提高ACO在复杂环境下的性能,研究者们提出了多种改进策略,包括精英蚂蚁策略(仅让找到较优路径的蚂蚁更新信息素)、混合信息素策略(结合局部和全局信息素更新)、多蚁群协同策略等。