基于ACO蚁群优化算法的机器人路径规划matlab仿真

目录

1. 信息素模型

2. 蚂蚁移动规则

3. 信息素更新

4.算法流程

5.matlab程序

6.仿真结果


      蚁群优化算法(Ant Colony Optimization, ACO)是一种启发式优化技术,灵感来源于自然界中蚂蚁寻找食物时的集体行为。在机器人路径规划领域,ACO通过模拟蚂蚁在环境中留下信息素并据此探索路径的过程,为机器人寻找从起点到终点的最优路径提供了有效的解决方案。

1. 信息素模型

       假设有一个图G=(V,E),其中V 是顶点集(代表机器人可到达的位置),E 是边集(代表位置间的可行路径)。每个边eij​∈E 上的信息素浓度记为τij​,它反映了蚂蚁经过这条路径的频繁程度,从而影响未来蚂蚁选择该路径的概率。

2. 蚂蚁移动规则

每只蚂蚁在探索路径时,根据以下原则选择下一个顶点vj​:

其中:

Pij​ 是蚂蚁从顶点i 移动到j 的概率。

τij​ 是边eij​ 上的信息素浓度。

etaij​ 是边eij​ 的启发式信息(如路径长度的倒数,用于引导蚂蚁探索较短路径)。

α 和 β 是控制信息素重要性和启发式信息重要性的参数。

Ni​ 是顶点 i 的邻接点集合。

3. 信息素更新

信息素的动态更新包括两个过程:蒸发和沉积。

蒸发:信息素随时间自然挥发,模拟现实世界中信息素的自然消失。每步迭代后,所有边上的信息素浓度按比例ρ (挥发因子,0 <ρ < 1)减少:τij​←(1−ρ)⋅τij​

沉积:蚂蚁在完成一次路径探索后,会在所走过的路径上增加信息素,增强路径的吸引力: τij​←τij​+Δτij​ 其中,Δτij​ 为蚂蚁在路径eij​ 上的贡献量,通常与蚂蚁找到的路径质量(如总距离的倒数)成正比。

4.算法流程

初始化:设定参数α, β, ρ, 蚂蚁数量m,初始化信息素浓度(通常为小正数)。

构建解:每只蚂蚁按照上述移动规则探索路径,直到所有蚂蚁都完成了从起点到终点的探索。

信息素更新:根据蚂蚁的探索结果更新信息素浓度,先进行全局信息素蒸发,然后根据蚂蚁的路径沉积信息素。

迭代:重复步骤2和3,直到达到预设的迭代次数或找到满意的解。

解的选择:记录并比较每次迭代中所有蚂蚁找到的路径长度,选取最短的作为最终的最优路径。

5.matlab程序

...................................................................
%% 开始迭代
for epoch = 1: epochs
    Delta_Tau = zeros(n, n);
    for ant = 1: ants
        if Distance(epoch, ant)
            ROUT = ROUTES{epoch, ant};
            TS = length(ROUT) - 1;
            Dis_km = Distance(epoch, ant);
            for s = 1: TS
                x = ROUT(s);
                y = ROUT(s + 1);
                Delta_Tau(x, y) = Delta_Tau(x, y) + q / Dis_km;
                Delta_Tau(y, x) = Delta_Tau(y, x) + q / Dis_km;
            end
        end
    end
    Tau = (1 - rho) * Tau + Delta_Tau;
end
%% 绘图
plotif = 1;
if plotif == 1
    minDis = zeros(epochs, 1);
    for i = 1: epochs
        Dis = Distance(i, :);
        Nonzero = find(Dis);
        PLK = Dis(Nonzero);
        minDis(i) = mean(PLK);
    end
    figure(1);
    plot(minDis);
    hold on;
    grid on;
    title('收敛曲线变化趋势'); 
    xlabel('迭代次数'); 
    ylabel('最小路径长度');
    figure(2) 
    axis([0,mm,0,mm]);
    for i = 1: mm
        for j = 1:mm
            if G(i, j) == 1
                x1 = j - 1; y1 = mm - i;
                x2 = j;y2 = mm - i;
                x3 = j;y3 = mm - i + 1;
                x4 = j - 1;y4 = mm - i + 1;
                fill([x1, x2, x3, x4], [y1, y2, y3, y4],[0.2, 0.2, 0.2]);
                hold on;
            else
                x1 = j - 1; y1 = mm - i;
                x2 = j;y2 = mm - i;
                x3 = j;y3 = mm - i + 1;
                x4 = j - 1;y4 = mm - i + 1;
                fill([x1, x2, x3, x4], [y1, y2, y3, y4],[1, 1, 1]);
                hold on;
            end
        end
    end
    hold on;
    title('机器人运动轨迹'); 
    xlabel('坐标x'); 
    ylabel('坐标y');
    ROUT = ROUTES{mink, minl};
    LENROUT = length(ROUT);
    Rx = ROUT;
    Ry = ROUT;
    for ii = 1: LENROUT
        Rx(ii) = mod(ROUT(ii),mm)-0.5;
        if Rx(ii) == -0.5 
            Rx(ii) = mm - 0.5; 
        end
        Ry(ii) = mm + 0.5 - ceil(ROUT(ii) / mm); 
    end
    plot(Rx, Ry,'b','linewidth',2);
end
4126

6.仿真结果

       ACO算法在数学上可视为一种元启发式搜索方法,它通过迭代过程不断逼近问题的全局最优解。算法的优化性能依赖于信息素更新策略和参数设置,尤其是参数α 和β 的平衡,决定了算法在探索(exploration)与利用(exploitation)之间的权衡。
      为了提高ACO在复杂环境下的性能,研究者们提出了多种改进策略,包括精英蚂蚁策略(仅让找到较优路径的蚂蚁更新信息素)、混合信息素策略(结合局部和全局信息素更新)、多蚁群协同策略等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值