✅博主简介:本人擅长建模仿真、数据分析、论文写作与指导,项目与课题经验交流。项目合作可私信或扫描文章底部二维码。
交互车辆意图预测和轨迹预测是确保先进驾驶辅助和自动驾驶系统安全可靠的关键技术。准确预测与本车交互的车辆的驾驶意图和驾驶轨迹,可为本车的驾驶决策规划提供依据。基于准确的他车意图和轨迹预测结果进行自动驾驶决策规划具有诸多优势,如对交互车辆的驾驶意图把握准确,更具可解释性。目前,使用机器学习和神经网络方法的车辆意图预测算法及基于意图预测的自动驾驶算法已成为相关领域的热点。
二、基于支持向量机的交互车辆换道意图预测算法
-
特征设计与筛选
- 设计了五种能够表征车辆换道意图的机器学习特征,这些特征涵盖了车辆的运动状态、位置信息等方面,能够有效地反映车辆的潜在换道意图。
- 引入递归特征消除机制,对这五种特征的重要性进行排列筛选。通过逐步排除不太重要的特征,确定对换道意图预测最具贡献的特征组合,提高了模型的准确性和效率。
-
支持向量机模型建立与性能测试
- 建立了解决交互车辆紧急换道意图预测问题的支持向量机模型。该模型利用筛选后的特征作为输入,通过训练学习车辆换道意图与特征之间的关系。
- 测试了模型在不同预测时域上的性能。通过在不同时间范围内进行预测,评估模型的时效性和稳定性,以确定其在实际应用中的最佳预测时域。
-
核函数对比与选择
- 实施了基于多种核函数的支持向量机算法对比。不同的核函数在处理不同类型的数据和问题时具有不同的性能表现。通过对比不同核函数下的模型性能,选出最适合于解决意图预测问题的核函数。
三、基于时间卷积图注意力的交互车辆轨迹预测方法
-
神经网络结构分析与方法提出
- 分析神经网络各种结构的特性以及适用场景。不同的神经网络结构在处理不同类型的问题时具有不同的优势和局限性。通过深入分析各种结构的特点,为提出适用于交互车辆轨迹预测的方法提供了理论基础。
- 提出了一种基于时间卷积图注意力的交互车辆轨迹预测方法(TCGAT)。该方法结合了时间卷积和图注意力机制,能够有效地捕捉车辆之间的交互关系和时间序列信息,提高轨迹预测的准确性。
-
性能验证与方法有效性说明
- 通过对比实验,证实了用图注意力机制建模车辆间交互对于模型性能的提升。将采用图注意力机制的模型与未采用该机制的模型进行对比,展示了图注意力机制在捕捉车辆间交互关系方面的优势,从而说明本方法对交互车辆紧急换道轨迹预测问题的有效性。
- 微调神经网络以适应全场景轨迹预测问题。通过对神经网络进行微调,使其不仅能够处理交互车辆紧急换道轨迹预测问题,还可以适应各种全场景的轨迹预测问题,提高了方法的通用性和实用性。
-
与前沿算法模型对比及泛化性验证
- 通过与轨迹预测领域前沿算法模型的性能对比,验证了所提出方法的先进性与在轨迹预测领域的有效性。将 TCGAT 方法与其他先进的轨迹预测算法进行比较,展示其在准确性、时效性等方面的优势。
- 在无人机自采的自然驾驶数据上验证本提出的方法在真实场景中的泛化性。利用无人机采集的自然驾驶数据,对方法进行实际场景的测试,验证其在真实环境中的可靠性和适用性。
四、基于意图预测的深度学习自动驾驶规划算法
-
算法设计
- 以 TCGAT 神经网络为骨架,设计了 “未考虑交互车辆意图预测的深度学习自动驾驶规划算法” 和 “基于交互车辆意图预测的深度学习自动驾驶规划算法”。这两种算法分别在是否考虑交互车辆意图预测的情况下进行自动驾驶规划,以对比其性能差异。
-
实验任务与结果分析
- 在数据集上进行了轨迹规划和减速判断两种任务的实验。通过这两种典型的自动驾驶规划任务,评估算法的性能和有效性。
- 结果表明,基于 TCGAT 的端到端规划算法能有效完成规划任务。同时,在自动驾驶规划算法中考虑交互车辆的驾驶意图对于规划算法的性能有提升作用,进一步强调了交互车辆意图预测在自动驾驶中的重要性。
import numpy as np
import random
# 车辆状态数据
class VehicleState:
def __init__(self, position, velocity, acceleration):
self.position = position
self.velocity = velocity
self.acceleration = acceleration
# 支持向量机意图预测相关操作
class SVMIntentPredictor:
def __init__(self):
self.model = None
self.selected_features = None
def generate_features(self, vehicle_states):
# 假设五种特征为位置变化、速度变化、加速度变化、与前车距离变化、与后车距离变化
features = []
for state in vehicle_states:
prev_state = vehicle_states[max(0, vehicle_states.index(state) - 1)]
position_change = state.position - prev_state.position
velocity_change = state.velocity - prev_state.velocity
acceleration_change = state.acceleration - prev_state.acceleration
# 假设可以获取前后车状态计算距离变化
front_distance_change = random.randint(0, 10)
rear_distance_change = random.randint(0, 10)
features.append([position_change, velocity_change, acceleration_change, front_distance_change, rear_distance_change])
return np.array(features)
def train_svm(self, features, labels, kernel='rbf'):
from sklearn.svm import SVC
from sklearn.feature_selection import RFE
svm = SVC(kernel=kernel)
rfe = RFE(estimator=svm, n_features_to_select=3, step=1)
rfe.fit(features, labels)
self.model = svm.fit(features[:, rfe.support_], labels)
self.selected_features = [i for i, bool_val in enumerate(rfe.support_) if bool_val]
return self.model
def predict_intent(self, vehicle_states):
features = self.generate_features(vehicle_states)
selected_features_data = features[:, self.selected_features]
return self.model.predict(selected_features_data)
# 时间卷积图注意力轨迹预测相关操作
class TCGATTrajectoryPredictor:
def __init__(self):
self.model = None
def generate_graph_data(self, vehicle_states):
# 假设构建简单的图数据结构,每个车辆作为一个节点,边表示车辆之间的交互关系
graph_data = []
for state in vehicle_states:
node_data = [state.position, state.velocity, state.acceleration]
# 假设随机生成交互关系
interactions = [random.randint(0, 10) for _ in vehicle_states]
graph_data.append(node_data + interactions)
return np.array(graph_data)
def train_tcga_model(self, graph_data, target_trajectories):
# 这里只是模拟训练过程,实际需要使用深度学习框架实现时间卷积图注意力网络
self.model = "TCGAT model"
return self.model
def predict_trajectory(self, vehicle_states):
graph_data = self.generate_graph_data(vehicle_states)
# 假设模型可以直接预测轨迹
return self.model.predict(graph_data)
svm_predictor = SVMIntentPredictor()
# 车辆状态数据和换道意图标签
vehicle_states = [VehicleState(random.randint(0, 100), random.randint(0, 50), random.randint(-5, 5)) for _ in range(10)]
labels = [random.randint(0, 1) for _ in range(10)]
features = svm_predictor.generate_features(vehicle_states)
svm_model = svm_predictor.train_svm(features, labels)
intent_prediction = svm_predictor.predict_intent(vehicle_states)
tcgat_predictor = TCGATTrajectoryPredictor()
graph_data = tcgat_predictor.generate_graph_data(vehicle_states)
# 模拟目标轨迹数据
target_trajectories = [np.array([random.randint(0, 100) for _ in range(10)]) for _ in range(len(vehicle_states))]
tcga_model = tcgat_predictor.train_tcga_model(graph_data, target_trajectories)
trajectory_prediction = tcgat_predictor.predict_trajectory(vehicle_states)