✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1)改进自适应蚁群优化算法在静态环境下的全局路径规划
在无人帆船的自主航行中,路径规划是至关重要的环节之一。尤其是在静态环境下,无人帆船需要根据已知的海洋地形和障碍物,找到最优的航行路线,以达到高效和安全的目的。针对这一需求,本文采用改进自适应蚁群优化算法进行全局路径规划,以应对蚁群算法在寻路前期所面临的盲目性问题。为了加快最优解的收敛速度,我们在初始阶段结合风矢量场因素,对基本蚁群优化算法的初始信息素进行了合理的设定,使得蚁群在路径选择时能够优先考虑风向和风速对航行的影响,减少航行时间和能源消耗。
此外,为了使蚁群优化算法更加符合无人帆船的实际路径规划需求,本文对基本启发函数进行了改进。传统蚁群算法的启发函数单一,通常只能考虑路径长度这一因素,这在复杂环境中会导致规划结果缺乏实际适用性。为了克服这一局限性,我们增加了风场贡献因素和路径长度因素,使得算法能够在路径选择时更好地结合无人帆船受风力的影响,选择更加合适的航线。同时,本文还对蚁群优化算法的信息素更新规则进行了调整,引入了自适应策略,使信息素的更新与蚁群的全局与局部搜索能力相平衡,减少了陷入局部最优解的风险。
最后,针对蚁群寻路过程中的步长问题,本文采用自适应的步长调整策略,使得在初始探索阶段蚁群可以采取较大的步长进行广泛搜索,而在后续的优化阶段逐步缩小步长以精细化搜索,从而提高路径规划的精度。通过以上改进,仿真对比结果表明,改进后的算法在全局路径规划中表现出明显优势,其路径长度相对更短,收敛速度也大大提高,规划出的路径能够更好地适应无人帆船的运动特性与航行需求。
(2)基于动态避障模型的局部路径规划
在无人帆船实际航行过程中,除了静态障碍物之外,还会面临动态障碍物的挑战,如其他船只、漂浮物等。因此,在路径规划中,局部动态避障是保障无人帆船安全的重要环节。本文提出了一种结合风向风速的动态避障模型,针对无人帆船航行中可能遇到的动态障碍物进行实时规划调整。当无人帆船在行驶过程中由传感器检测到动态障碍物时,系统会即时计算无人帆船与障碍物之间的最近会遇距离、最小会遇时间以及避障角度,以确保帆船能够及时避让。
在避障过程中,本文遵循了海事规则中的第13、14、15条,这些规则明确了船只之间的追越、正面相遇以及交叉相遇等不同情况的避让方式。结合这些规则,算法可以根据当前航行环境自动识别无人帆船所处的会遇情况,并基于此约束计算出蚁群的可行域。然后,系统会重新启动改进的自适应蚁群优化算法,规划局部路径以实现动态避障。特别是在风力的影响下,无人帆船需要综合考虑风向与航行路径之间的关系,从而有效规避障碍物并确保航行的稳定性和安全性。
通过仿真验证,该方法在无人帆船面对动态障碍物如其他船只追越、正面相遇、右舷交叉和左舷交叉等多种情况时,均能成功实现避障,从而为无人帆船在复杂航行环境中的安全提供了技术保障。基于这一改进,系统的局部路径规划不仅提高了避障成功率,还减少了避障过程中对航行效率的影响,使无人帆船在复杂环境中具备更强的适应能力。
(3)融合滚动窗口法的复杂环境路径规划
除了已知的静态和动态障碍物外,无人帆船在复杂海洋环境下还会遇到突发的不可预知的障碍物。为了应对这种复杂情况,本文提出了一种融合滚动窗口法的蚁群优化算法,以适应复杂海洋环境的路径规划需求。滚动窗口法的核心思想是基于当前局部环境信息进行路径规划,并随着帆船的移动不断更新规划区域,直至到达目标点。该方法有效地提高了无人帆船在面对不确定性时的路径规划能力,使得整个路径规划过程更加动态和灵活。
在这一部分中,本文首先对蚁群算法进行了进一步改进。在改进的自适应蚁群优化算法的基础上,增加了转向次数这一因素,目的是控制无人帆船在航行中的转向频率,以节约能量并降低机械负担。同时,在状态转移概率中加入了碰撞危险度因子和实际避障角度因子,以确保在复杂环境下帆船能够成功应对突发的障碍物。通过不断地根据局部环境进行路径重新规划,结合滚动窗口的逐步推进,算法能够在每一个窗口内找到适合当前环境的最优路径,并将规划结果不断滚动至下一个窗口,直至无人帆船到达目标终点。
在仿真对比实验中,该方法在应对突发静态障碍物、动态障碍物以及不同数量和状态的混合障碍物时,均展现出了稳定的表现。融合滚动窗口的路径规划方式,使得无人帆船能够在复杂、多变的环境中保持良好的航行效率和安全性,尤其是在突发情况下,系统能够快速作出反应,调整航线以避开障碍,确保航行的安全与稳定。
通过对无人帆船在不同环境下的路径规划研究,本文综合考虑了帆船在风力驱动下的运动特性、相关海事规则,以及不同类型障碍物的避障需求,提出了一套基于改进蚁群算法的完整路径规划方案。通过对蚁群算法的多方面改进,特别是信息素的初始化、启发函数的改进、自适应策略的引入、动态避障模型的应用,以及融合滚动窗口法的路径规划方式,使得无人帆船的路径规划更加高效、稳定和安全。在经过大量的仿真实验对比后,本文提出的路径规划方法在不同工况下均表现出了良好的适用性和稳定性,具有重要的理论价值和实际应用前景。
% 参数初始化
num_ants = 50; % 蚂蚁数量
max_iter = 100; % 最大迭代次数
alpha = 1; % 信息素重要程度因子
beta = 2; % 启发式信息重要程度因子
evap_rate = 0.5; % 信息素挥发率
Q = 100; % 信息素增加强度
% 初始化地图和相关参数
map_size = 100; % 地图尺寸
obstacles = randi([0 1], map_size, map_size); % 随机生成障碍物
start_point = [1, 1];
end_point = [100, 100];
% 初始化信息素矩阵
pheromone = ones(map_size); % 信息素初始值
best_path = [];
best_length = inf;
% 主循环
for iter = 1:max_iter
paths = cell(num_ants, 1);
lengths = zeros(num_ants, 1);
% 每只蚂蚁寻找路径
for ant = 1:num_ants
current_pos = start_point;
path = current_pos;
while ~isequal(current_pos, end_point)
% 获取当前可行的邻居节点
neighbors = get_neighbors(current_pos, map_size, obstacles);
if isempty(neighbors)
break;
end
% 计算状态转移概率
probs = calculate_probs(current_pos, neighbors, pheromone, alpha, beta);
% 按照概率选择下一个节点
next_pos = select_next(neighbors, probs);
% 更新路径
path = [path; next_pos];
current_pos = next_pos;
end
paths{ant} = path;
lengths(ant) = size(path, 1);
% 更新最优路径
if lengths(ant) < best_length
best_length = lengths(ant);
best_path = path;
end
end
% 更新信息素矩阵
pheromone = (1 - evap_rate) * pheromone; % 信息素挥发
for ant = 1:num_ants
for step = 1:size(paths{ant}, 1)-1
pos = paths{ant}(step, :);
pheromone(pos(1), pos(2)) = pheromone(pos(1), pos(2)) + Q / lengths(ant);
end
end
end
% 输出最优路径和长度
disp('最优路径:');
disp(best_path);
disp(['最短路径长度: ', num2str(best_length)]);
% 获取邻居节点函数
function neighbors = get_neighbors(pos, map_size, obstacles)
directions = [0 1; 1 0; 0 -1; -1 0];
neighbors = [];
for i = 1:size(directions, 1)
neighbor = pos + directions(i, :);
if all(neighbor > 0 & neighbor <= map_size) && obstacles(neighbor(1), neighbor(2)) == 0
neighbors = [neighbors; neighbor];
end
end
end
% 计算状态转移概率函数
function probs = calculate_probs(current_pos, neighbors, pheromone, alpha, beta)
tau = pheromone(sub2ind(size(pheromone), neighbors(:,1), neighbors(:,2))).^alpha;
eta = 1 ./ sqrt(sum((neighbors - current_pos).^2, 2)).^beta;
probs = tau .* eta;
probs = probs / sum(probs);
end
% 选择下一个节点函数
function next_pos = select_next(neighbors, probs)
cumulative_probs = cumsum(probs);
r = rand;
next_index = find(r <= cumulative_probs, 1);
next_pos = neighbors(next_index, :);
end