A~*与DWA算法的室内机器人路径规划毕业论文【附代码+数据】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


移动机器人需要具备高效的避障能力和路径规划能力,以应对各种动态变化的情况。本文针对两轮差速移动机器人在室内环境中的路径规划问题,提出了一种结合改进A*算法与改进DWA(动态窗口法)算法的混合路径规划方法。该方法旨在提高路径规划的效率和平滑度,同时增强对未知障碍物的规避能力。

坐标匹配与运动学模型

首先,为了确保机器人能够准确地理解和执行路径规划指令,我们进行了坐标匹配和变换工作。对于两轮差速机器人而言,其运动学特性决定了它在平面上的位置和方向可以通过左右轮的速度差来控制。因此,我们基于机器人的物理结构建立了相应的运动学模型。这个模型不仅描述了机器人如何根据输入的速度信号进行移动,还考虑到了实际应用中可能出现的各种非理想因素,如轮子打滑、地面摩擦不均等。

地图构建

接下来,我们研究了环境地图的构建问题。在室内场景下,精确的地图是实现有效路径规划的前提。通过对几种常用建图算法的分析比较,我们最终选择了Cartographer作为主要的地图构建工具。Cartographer是一种开源SLAM(Simultaneous Localization and Mapping)系统,能够在实时运行的同时生成高质量的地图。实验结果表明,使用Cartographer可以清晰地描绘出环境中的障碍物位置,并为后续的定位和路径规划提供了可靠的参考信息。

全局定位

在拥有准确地图的基础上,下一步是解决机器人的全局定位问题。为此,我们采用了自适应蒙特卡洛定位算法(Adaptive Monte Carlo Localization, AMCL)。AMCL通过粒子滤波的方法估计机器人在地图上的位姿分布,具有良好的鲁棒性和准确性。经过多次实验验证,即使在复杂的室内环境下,AMCL也能够稳定地跟踪机器人的当前位置,并且随着机器人移动,定位精度会逐渐提高。

(2)解决了地图构建和全局定位的问题后,接下来的重点是如何高效且平滑地规划出一条从起点到终点的路径。传统的A算法虽然广泛应用于路径规划领域,但在处理大规模或高维度数据时存在搜索耗时长、路径转折点多等问题。因此,我们对A算法进行了改进,以优化其性能。

改进A*算法

我们在原始A算法基础上引入了跳点搜索(Jump Point Search, JPS)策略,这是一种高效的启发式搜索方法,能够显著减少不必要的节点扩展。JPS通过预判并跳过那些明显不会包含最优解的区域,从而大幅提高了搜索速度。此外,我们还改进了A的评价函数,使其更加关注路径的实际长度而非简单的网格距离。这有助于找到更贴近真实情况的最佳路径。

为进一步提升路径质量,我们利用贝塞尔曲线对搜索得到的路径进行了拟合处理。贝塞尔曲线以其平滑性和灵活性而著称,在这里用来连接各关键点,从而形成一段连续且无突变的轨迹。实验结果表明,相比原始A*算法及其他一些改进版本,我们的方法在运行时间、路径长度以及转折次数等方面均有明显优势。

改进DWA算法

尽管改进后的A算法已经能够很好地解决静态环境下的路径规划问题,但对于动态障碍物的规避仍显得力不从心。为此,我们将改进A与改进DWA相结合,形成了一个强大的混合路径规划框架。DWA算法是一种局部避障方法,特别适用于处理即时出现的障碍物。通过计算一系列可能的线速度和角速度组合,并评估每个组合的安全性和可达性,DWA能够在短时间内选择出最佳动作。

我们的改进版DWA进一步增强了对环境变化的响应能力。具体来说,我们增加了对未来多步预测的支持,并调整了代价函数以更好地平衡安全性与效率。这样做的好处在于即使面对突然出现的障碍物,机器人也能迅速作出反应,避免碰撞发生。

(3)最后,我们对所提出的混合路径规划方法进行了全面的实验验证。这些实验不仅包括了仿真测试,还包括了在真实环境中的实物验证。通过搭建一套完整的移动机器人实验平台,我们能够在实际场景中检验算法的效果。

仿真测试

在仿真环境中,我们设置了多种不同的障碍布局,并让机器人从不同起点出发前往目标位置。每次实验都记录下了整个过程的关键指标,如路径长度、耗时、转角数量等。结果显示,无论是在空旷地带还是密集障碍区,混合规划方法都能够快速找到合适的路线,并且路径平滑度很高,几乎没有急转弯现象。特别是在遇到未知障碍物时,DWA部分能够及时发挥作用,引导机器人绕行避开危险区域。

实物验证

为了进一步证明算法的有效性,我们还在实际环境中进行了多次实验。这些实验涵盖了办公场所、实验室等多种典型的室内场景。实验过程中,机器人先利用Cartographer构建当前环境的地图,然后通过AMCL进行精确定位。在此基础上,采用混合规划方法进行路径规划,并执行导航任务。

实验证明,机器人能够顺利完成从起始点到目标点的自主导航,期间表现出优秀的避障能力和稳定的行驶状态。即使在某些情况下出现了未预料到的障碍物,机器人也能凭借改进DWA的能力成功绕开,并继续向目标前进。总体来看,无论是仿真还是实物实验,所提算法都展现出了良好的可行性和实用性。

综上所述,本文提出了一种将改进A算法与改进DWA算法相结合的混合路径规划方法。该方法不仅解决了传统A算法存在的诸多问题,还大大增强了机器人在复杂室内环境中的避障能力。未来的工作将进一步探索如何将这种方法应用到更多类型的移动机器人上,并持续优化其性能表现。

% 初始化参数
grid_size = 100; % 网格大小
start_point = [10, 10]; % 起点
goal_point = [90, 90]; % 终点
obstacles = [40:50, 40:50; 70:80, 70:80]; % 障碍物位置

% A*算法初始化
function [open_list, closed_list] = a_star_init(grid, start, goal)
    open_list = struct('position', start, 'g', 0, 'h', heuristic(start, goal), 'parent', []);
    closed_list = [];
end

% 启发式函数
function [h] = heuristic(current, goal)
    h = norm(goal - current);
end

% A*算法主循环
function [path] = a_star_search(grid, start, goal, obstacles)
    [open_list, closed_list] = a_star_init(grid, start, goal);
    
    while ~isempty(open_list)
        % 从开放列表中选择f值最小的节点
        [~, idx] = min([open_list.g] + [open_list.h]);
        current_node = open_list(idx);
        
        % 如果当前节点为目标节点,则找到路径
        if isequal(current_node.position, goal)
            path = reconstruct_path(current_node, closed_list);
            return;
        end
        
        % 将当前节点从开放列表移除并加入封闭列表
        open_list(idx) = [];
        closed_list = [closed_list, current_node];
        
        % 生成邻居节点
        neighbors = generate_neighbors(current_node.position, grid, obstacles);
        
        for i = 1:length(neighbors)
            neighbor = neighbors(i);
            
            % 如果邻居节点已经在封闭列表中,则跳过
            if any(ismember({[neighbor, []]}, {closed_list.position}))
                continue;
            end
            
            % 计算新的g值
            tentative_g = current_node.g + distance(current_node.position, neighbor);
            
            % 如果邻居节点不在开放列表中,或者新的g值更低,则更新节点信息
            if ~any(ismember({[neighbor, []]}, {open_list.position})) || tentative_g < neighbor.g
                neighbor.g = tentative_g;
                neighbor.h = heuristic(neighbor, goal);
                neighbor.parent = current_node;
                
                if ~any(ismember({[neighbor, []]}, {open_list.position}))
                    open_list = [open_list, neighbor];
                end
            end
        end
    end
    
    path = []; % 没有找到路径
end

% 重构路径
function [path] = reconstruct_path(node, closed_list)
    path = node.position;
    while ~isempty(node.parent)
        node = node.parent;
        path = [node.position, path];
    end
end

% 生成邻居节点
function [neighbors] = generate_neighbors(position, grid, obstacles)
    directions = [1, 0; -1, 0; 0, 1; 0, -1];
    neighbors = [];
    
    for i = 1:size(directions, 1)
        new_position = position + directions(i, :);
        if all(new_position >= 1) && all(new_position <= grid) && ...
           ~any(all(new_position == obstacles, 2))
            neighbors = [neighbors, struct('position', new_position, 'g', Inf, 'h', 0, 'parent', [])];
        end
    end
end

% 距离函数
function [d] = distance(p1, p2)
    d = norm(p1 - p2);
end

% DWA算法初始化
function [velocities] = dwa_init(robot_pose, goal, obstacles, grid)
    velocities = [];
    max_linear_velocity = 1.0; % 最大线速度
    max_angular_velocity = pi / 4; % 最大角速度
    
    for v = 0:max_linear_velocity:0.1
        for w = -max_angular_velocity:max_angular_velocity/10:max_angular_velocity
            new_pose = predict_pose(robot_pose, v, w, 0.1); % 预测下一个时刻的姿态
            if is_valid_pose(new_pose, goal, obstacles, grid)
                velocities = [velocities, struct('linear', v, 'angular', w, 'pose', new_pose)];
            end
        end
    end
end

% 预测姿态
function [new_pose] = predict_pose(pose, v, w, dt)
    x = pose(1) + v * cos(pose(3)) * dt;
    y = pose(2) + v * sin(pose(3)) * dt;
    theta = pose(3) + w * dt;
    new_pose = [x, y, wrap_to_pi(theta)];
end

% 角度归一化
function [theta] = wrap_to_pi(theta)
    theta = mod(theta + pi, 2*pi) - pi;
end

% 姿态有效性检查
function [valid] = is_valid_pose(pose, goal, obstacles, grid)
    valid = true;
    if any(pose < 1) || any(pose(1:2) > grid)
        valid = false;
    elseif any(all(pose(1:2) == obstacles, 2))
        valid = false;
    end
end

% 选择最佳速度
function [best_velocity] = select_best_velocity(velocities, robot_pose, goal)
    best_score = -Inf;
    best_velocity = [];
    
    for i = 1:length(velocities)
        score = evaluate_velocity(velocities(i), robot_pose, goal);
        if score > best_score
            best_score = score;
            best_velocity = velocities(i);
        end
    end
end

% 评估速度
function [score] = evaluate_velocity(velocity, robot_pose, goal)
    to_goal_cost = norm(goal - velocity.pose(1:2));
    speed_cost = 1.0 - (velocity.linear / 1.0);
    yaw_diff = abs(wrap_to_pi(atan2(goal(2) - robot_pose(2), goal(1) - robot_pose(1)) - robot_pose(3)));
    yaw_cost = 1.0 - (yaw_diff / (pi / 2));
    score = to_goal_cost + speed_cost + yaw_cost;
end

% 主程序
path = a_star_search(grid_size, start_point, goal_point, obstacles);

if ~isempty(path)
    disp('Path found by A*:');
    disp(path);
    
    % 使用DWA进行局部避障
    robot_pose = start_point;
    robot_pose(3) = 0; % 初始角度设为0
    while ~isequal(robot_pose(1:2), goal_point)
        velocities = dwa_init(robot_pose, goal_point, obstacles, grid_size);
        best_velocity = select_best_velocity(velocities, robot_pose, goal_point);
        
        if ~isempty(best_velocity)
            robot_pose = best_velocity.pose;
            disp(['Moving to: ', mat2str(robot_pose)]);
        else
            disp('No valid velocity found, stopping.');
            break;
        end
    end
else
    disp('No path found by A*.');
end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值