✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1)基于支持向量机的自适应核功率密度毫米波信道分簇算法
在 5G 迅速发展与普及的时代背景下,人们的通信需求从人与人之间向万物互联互通转变,这使得通信设备数量和数据流量剧增,对 5G 通信网络质量提出了更高要求。毫米波作为 5G 关键技术,在高用户密度和超大流量热点场景下能实现高速率传输。而无线信道建模对于理解无线传播环境和特性至关重要,是构建无线通信系统的首要问题,尤其毫米波信道建模对 5G 系统设计、仿真和先进技术评估意义重大。
传统的毫米波信道分簇算法存在依赖簇的先验信息的问题。为解决这一问题,提出了基于自适应核功率密度(AKPD)和支持向量机(SVM)的 AKPD(SVM - AKPD)毫米波信道分簇算法。首先,计算多径(MPC)的自适应 K 值的基于距离的方法有着重要意义。这种方法可以更精准地描述 MPC 密度的局部变化规律。例如,在复杂的通信环境中,不同区域的多径信号密度可能存在很大差异,传统的固定参数方法无法准确捕捉这种变化,而自适应 K 值方法可以根据实际的多径分布情况灵活调整,更好地适应局部变化。
接着,利用 AKPD 计算簇心,并将其视为带标签数据用于训练 SVM。簇心的计算是分簇的关键步骤,它代表了每个簇的中心特征。通过 AKPD 计算得到的簇心能够更准确地反映多径信号的聚集情况。然后,借助 SVM 寻找特征空间(信道参数空间)最优超平面,从而实现 MPC 的多维度、高密度非线性分簇。SVM 的优势在于它可以处理复杂的非线性分类问题,在毫米波信道分簇中,信道参数往往具有复杂的非线性关系,SVM 可以很好地应对这种情况。
基于 28 GHz 电力配用电场景高铁站候车厅实测信道数据和仿真信道数据对所提 AKPD 和 SVM - AKPD 算法进行分簇性能验证。在高铁站这种复杂的通信场景中,存在大量的人员流动、各种障碍物以及多种类型的通信设备,信道环境复杂多变。实测信道数据能够真实反映这种复杂环境下的毫米波信道特性,而仿真信道数据则可以用于对比和进一步验证算法的性能。结果表明,所提分簇算法在不同信道环境下分簇性能优于传统信道分簇算法,具有良好的鲁棒性,且不需要信道先验信息。这意味着该算法在各种实际应用场景中都能稳定可靠地工作,无需提前了解信道的特定信息,为毫米波信道分簇提供了一种更实用的方法。
(2)基于具有时变结构的自组织映射网络的毫米波信道分簇算法
随着通信技术的发展,未来信道建模将面临大数据属性的挑战。传统毫米波信道分簇算法性能依赖于参数的初始化,并且算法复杂度过高,这使其在面对具有大数据属性的信道建模时显得力不从心。
针对这些问题,提出了基于具有时变结构的自组织映射网络(SOM - TVS)的毫米波信道分簇算法。首先,根据 MPC 分布特征,结合竞争层神经元的位置和权重参数初始化 SOM。MPC 分布特征是初始化的关键依据,不同的分布特征决定了神经元的初始位置和权重。例如,在信道中多径信号集中在某些特定区域时,相应区域的神经元权重会被设置得较高,以更好地反映多径信号的分布情况。
然后,利用功率加权的 Guassian - Sinc 邻域核函数,优化 SOM 的竞争对抗性。这种邻域核函数能够根据多径信号的功率大小对竞争关系进行加权调整。在实际的信道环境中,多径信号的功率各不相同,功率较大的多径信号对信道特性的影响通常更为显著。通过功率加权,可以使算法更关注这些重要的多径信号,提高分簇的准确性。
基于 28 GHz 电力配用电场景高铁站候车厅实测信道数据和仿真信道数据验证 SOM - TVS 算法的分簇性能。在同样复杂的高铁站环境中,该算法表现出了明显的优势。实测信道数据再次体现了真实环境下算法的适应性,仿真信道数据则用于更全面地评估算法在不同模拟情况下的性能。结果表明,所提 SOM - TVS 算法性能优于传统信道分簇算法,且在较低的算法复杂度下实现了毫米波信道的精确分簇。这意味着该算法不仅能够更准确地对毫米波信道进行分簇,还能在处理大量信道数据时更高效地运行,满足未来信道建模中大数据属性的要求。
(3)基于多径轨迹的毫米波时变信道分簇算法
在处理非平稳时变信道时,传统的分簇算法往往难以满足精确建模的需求。
针对这一情况,提出了基于多径轨迹的毫米波时变信道分簇算法。首先,同时考虑不同快照间 MPC 的距离相似度和速度相似度,利用模糊理论和全局匹配方法实现多径轨迹的精确追踪。在时变信道中,多径信号的位置和速度都在不断变化,仅仅考虑单一因素无法准确追踪多径轨迹。例如,在某个时刻,两条多径信号可能距离相近,但速度不同,随着时间推移,它们的轨迹会有很大差异。通过同时考虑距离相似度和速度相似度,并结合模糊理论和全局匹配方法,可以更全面、准确地追踪多径轨迹。模糊理论可以处理这种具有不确定性的相似关系,而全局匹配方法则可以从整体上考虑多径信号在不同快照间的变化情况。
其次,提出了模糊多径轨迹分簇算法,基于模糊理论将不同多径轨迹根据隶属度分配到不同多径轨迹簇中,实现多径轨迹的精确分簇。隶属度的概念在这种分簇方法中非常关键,它表示每个多径轨迹属于某个簇的程度。在复杂的时变信道环境中,多径轨迹可能具有模糊的归属关系,不是绝对地属于某个特定的簇。通过模糊理论的隶属度分配,可以更灵活、准确地对多径轨迹进行分簇。
基于毫米波 28GHz 仿真信道数据验证所提算法的多径追踪和分簇性能。仿真信道数据可以模拟各种复杂的时变信道情况,通过大量的仿真实验,可以全面评估算法的性能。结果表明,所提算法可准确识别多径轨迹簇,实现毫米波时变信道中 MPC 时间演进特性的精确建模。这为非平稳时变信道的建模和分析提供了有力的工具,有助于更好地理解和处理时变信道中的多径信号特性。
(4)基于机器学习的毫米波时变信道回放技术
传统基于统计的信道仿真存在无法与环境匹配的问题,这严重影响了信道建模的精度和实用性。
为解决这一问题,提出了基于机器学习的毫米波时变信道回放技术。机器学习具有能够充分逼近复杂的非线性关系的特性,利用这一特性建立路损 + 阴影衰落模型回放信道路径损耗。在实际的通信环境中,路径损耗和阴影衰落受到多种因素的影响,呈现出复杂的非线性关系。例如,建筑物的遮挡、地形的起伏等都会导致信号强度的不规则变化。传统的统计模型很难准确描述这种复杂关系,而机器学习模型可以通过学习大量的数据来逼近这种真实的关系,从而更准确地回放路径损耗。
同时,联合小尺度参数模型生成信道小尺度参数,并代替传统基于统计模型的信道仿真中由信道参数统计规律产生的随机数。小尺度参数对于描述信道在短距离或短时间内的变化非常重要,传统统计模型产生的随机数无法准确反映真实信道的小尺度变化情况。通过机器学习生成的小尺度参数可以更好地与实际信道环境相匹配。
通过这种方式,将基于统计规律的传统信道建模转变为随时间变化的真实信道建模。基于 28 GHz 电力配用电场景高铁站候车厅实测信道数据和仿真数据验证所提基于机器学习的毫米波信道回放技术性能。在高铁站这种复杂且具有代表性的场景中,实测信道数据提供了真实的信道变化情况,仿真数据则用于对比和验证。结果表明,所提仿真技术克服了传统仿真平台的缺陷,可真实再现时变信道传播特性。这为毫米波信道的仿真和研究提供了更符合实际情况的方法,有助于提高通信系统设计和优化的准确性。
# 自适应核功率密度计算函数(简化示例)
def adaptive_kernel_power_density(mpc_data):
# 这里假设mpc_data是包含多径信息的列表,如[(path1_data), (path2_data),...]
akpd_value = 0
for mpc in mpc_data:
# 计算每个多径的局部密度贡献,这里简化为简单计算
akpd_value += mpc['power'] / (1 + mpc['distance_to_others'])
return akpd_value
# 支持向量机分类函数(使用scikit - learn库简化示例)
from sklearn import svm
def svm_classification(training_data, labels):
clf = svm.SVC()
clf.fit(training_data, labels)
return clf
# 基于SVM - AKPD的分簇函数
def svm_akpd_clustering(mpc_data):
# 计算自适应K值(这里简化为固定计算方式)
k_values = [3 for _ in range(len(mpc_data))]
akpd_results = [adaptive_kernel_power_density([mpc_data[i]]) for i in range(len(mpc_data))]
cluster_centers = []
for i in range(len(akpd_results)):
# 这里假设简单地根据AKPD结果确定簇心,实际更复杂
if akpd_results[i] > 10:
cluster_centers.append(mpc_data[i])
training_data = [cluster_centers[i]['parameters'] for i in range(len(cluster_centers))]
labels = [0 for _ in range(len(cluster_centers))]
svm_model = svm_classification(training_data, labels)
# 对所有MPC数据进行分类分簇
clusters = [[] for _ in range(len(svm_model.classes_))]
for mpc in mpc_data:
predicted_label = svm_model.predict([mpc['parameters']])[0]
clusters[predicted_label].append(mpc)
return clusters
# 自组织映射网络初始化函数(简化示例)
def som_initialize(mpc_data):
som = {}
# 根据MPC分布特征确定神经元数量和初始权重
num_neurons = 10
for i in range(num_neurons):
som[i] = {'weight': [0.5 for _ in range(len(mpc_data[0]['parameters']))]}
return som
# 功率加权的Guassian - Sinc邻域核函数(简化示例)
def power_weighted_gaussian_sinc(mpc, neuron, power_weight):
distance = sum([(mpc['parameters'][i] - neuron['weight'][i]) ** 2 for i in range(len(mpc['parameters']))])
gaussian_value = math.exp(-distance / (2 * 1)) # 简单的高斯函数示例
sinc_value = math.sin(distance) / distance if distance!= 0 else 1
return power_weight * gaussian_value * sinc_value
# 基于SOM - TVS的分簇函数
def som_tvs_clustering(mpc_data):
som = som_initialize(mpc_data)
for mpc in mpc_data:
# 计算每个MPC与神经元的匹配度
matches = [power_weighted_gaussian_sinc(mpc, som[i], mpc['power']) for i in range(len(som))]
winner_neuron = matches.index(max(matches))
# 更新获胜神经元及其邻域神经元的权重
for i in range(len(som)):
som[i]['weight'] = [som[i]['weight'][j] + 0.1 * (mpc['parameters'][j] - som[i]['weight'][j]) * (1 if i == winner_neuron else 0.5) for j in range(len(mpc['parameters']))]
# 根据最终的神经元权重确定分簇结果
clusters = [[] for _ in range(len(som))]
for mpc in mpc_data:
for i in range(len(som)):
if sum([(mpc['parameters'][j] - som[i]['weight'][j]) ** 2 for j in range(len(mpc['parameters']))]) < 0.5:
clusters[i].append(mpc)
break
return clusters
# 多径轨迹距离相似度计算函数(简化示例)
def distance_similarity(trajectory1, trajectory2):
total_distance = 0
for i in range(len(trajectory1)):
distance = sum([(trajectory1[i][j] - trajectory2[i][j]) ** 2 for j in range(len(trajectory1[i]))])
total_distance += distance
return 1 / (1 + total_distance)
# 多径轨迹速度相似度计算函数(简化示例)
def velocity_similarity(trajectory1, trajectory2):
velocity1 = [(trajectory1[i + 1][0] - trajectory1[i][0], trajectory1[i + 1][1] - trajectory1[i][1]) for i in range(len(trajectory1) - 1)]
velocity2 = [(trajectory2[i + 1][0] - trajectory2[i][0], trajectory2[i + 1][1] - trajectory2[i][1]) for i in range(len(trajectory2) - 1)]
total_velocity_distance = 0
for i in range(len(velocity1)):
velocity_distance = sum([(velocity1[i][j] - velocity2[i][j]) ** 2 for j in range(len(velocity1[i]))])
total_velocity_distance += velocity_distance
return 1 / (1 + total_velocity_distance)
# 多径轨迹追踪函数
def multipath_trajectory_tracking(snapshots):
trajectories = []
for snapshot in snapshots:
new_trajectories = []
if len(trajectories) == 0:
for mpc in snapshot:
new_trajectories.append([mpc])
else:
for existing_trajectory in trajectories:
best_match_mpc = None
best_match_similarity = 0
for mpc in snapshot:
distance_sim = distance_similarity(existing_trajectory[-1], [mpc])
velocity_sim = velocity_similarity(existing_trajectory, [mpc])
combined_sim = (distance_sim + velocity_sim) / 2
if combined_sim > best_match_similarity:
best_match_mpc = mpc
best_match_similarity = combined_sim
if best_match_mpc is not None:
new_trajectories.append(existing_trajectory + [best_match_mpc])
trajectories = new_trajectories
return trajectories
# 模糊多径轨迹分簇函数(简化示例)
def fuzzy_multipath_trajectory_clustering(trajectories):
clusters = []
for trajectory in trajectories:
best_match_cluster = None
best_match_membership = 0
for cluster in clusters:
# 这里假设简单的隶属度计算方式,根据轨迹的平均参数差异
membership = 1 / (1 + sum([(trajectory[0][i] - cluster[0][0][i]) ** 2 for i in range(len(trajectory[0]))]))
if membership > best_match_membership:
best_match_cluster = cluster
best_match_membership = membership
if best_match_cluster is None:
clusters.append([trajectory])
else:
best_match_cluster.append(trajectory)
return clusters
# 机器学习模型训练路损函数(使用scikit - learn库简化示例)
from sklearn.linear_model import LinearRegression
def train_path_loss_model(channel_data):
X = [[data['distance'], data['shadow_fading_factor']] for data in channel_data]
y = [data['path_loss'] for data in channel_data]
model = LinearRegression()
model.fit(X, y)
return model
# 机器学习模型训练小尺度参数函数(简化示例)
def train_small_scale_model(channel_data):
# 这里假设小尺度参数有多个,如幅度、相位等
X = [[data['distance'], data['other_factors']] for data in channel_data]
y_amplitude = [data['amplitude'] for data in channel_data]
y_phase = [data['phase'] for data in channel_data]
amplitude_model = LinearRegression()
phase_model = LinearRegression()
amplitude_model.fit(X, y_amplitude)
phase_model.fit(X, y_phase)
return amplitude_model, phase_model
# 基于机器学习的信道回放函数
def channel_replay(channel_data):
path_loss_model = train_path_loss_model(channel_data)
amplitude_model, phase_model = train_small_scale_model(channel_data)
new_channel_data = []
for data in channel_data:
new_path_loss = path_loss_model.predict([[data['distance'], data['shadow_fading_factor']]])[0]
new_amplitude = amplitude_model.predict([[data['distance'], data['other_factors']]])[0]
new_phase = phase_model.predict([[data['distance'], data['other_factors']]])[0]
new_data = {'distance': data['distance'], 'path_loss': new_path_loss, 'amplitude': new_amplitude, 'phase': new_phase}
new_channel_data.append(new_data)
return new_channel_data