手把手教你使用stata制作临床决策曲线

DCA(Decision Curve Analysis)临床决策曲线是一种用于评价诊断模型诊断准确性的方法,在2006年由AndrewVickers博士创建,我们通常判断一个疾病喜欢使用ROC曲线的AUC值来判定模型的准确性,但ROC曲线通常是通过特异度和敏感度来评价,实际临床中我们还应该考虑,假阳性和假阴性对病人带来的影响,因此在DCA曲线中引入了阈概率和净获益的概念。
在这里插入图片描述
图片来源文章:Urinary Podocalyxin as a Biomarker to Diagnose Membranous Nephropath主要讲的是利用肾脏标志物uPCXμgg诊断膜性肾病的事。这幅图的横坐标为阈概率,纵坐标为净获益。当uPCXμgg达到某个值时,患者模型肾病的概率记为Pi;当Pi达某个阈值(记为Pt),就界定为阳性。
净获益的概念,净获益是指按此概率开展措施后,因操作而获益的比例+ 未获益的比例权重。决策曲线中净获益的算法如下:(表格来源:临床流行病学和循证医学)
在这里插入图片描述
下面我们通过一个具体的四格表来看一下决策曲线分析的基本计算,假设阈值概率为10%,得到如下四格表(表格来源:临床流行病学和循证医学):
在这里插入图片描述
按照上面的10%的阈值去判断,我们判断对了23人,我们判断错了10人。这时候我们的净获益=(23/100)- [(10/100)
(0.1/0.9)]=0.218。同样我们可以计算当阈值概率为11%时的净获益值,也可以计算12%时的净获益值。依此类推,我们便可以获得阈值概率和净获益值的一一对应关系,还可以将此关系画成一个线图,便是决策曲线。

嗯,以上内容都是抄我上一篇文章的,上一篇我们已经说了怎么使用R语言制作,这篇来讲讲怎么使用stata制作临床决策曲线,继续使用Urinary Podocalyxin as a Biomarker to Diagnose Membranous Nephropath这篇文章自己附带的数据,也好和前面R语言制作的对比一下,stata制作临床决策曲线需要安装两个包,dca包和stdca包,dca包是用来制作logistic回归的临床决策曲线的,stdca包是用来制作cox回归临床决策曲线的
安装命令如下:

ssc install dca 或 ssc install stdca

你要是实在下载不了,可以在这个地址下载(包含有dca包和stdca包)
https://download.csdn.net/download/dege857/19256889

当然白嫖也是可以的
在这里插入图片描述
下载好以后把包的文件拷贝在:
C:\ado\plus\d和C:\ado\plus\s的目录下(各拷贝一次)
在这里插入图片描述
没有的话可以自己创建一个文件夹

OK,我们安装好包以后先打开stata并且导入文章数据
在这里插入图片描述
Stata会把有些大写字母自动转换成小写,影响不大,注意一下就可以了,我们看看数据,数据很多,这些只是其中一部分的数据,但是作者只用到了MN(膜性肾病)age(年龄)+eGFR(肾小球滤过率)+DM(糖尿病)+uPCXμgg(肾脏病标志物)这几个指标,作者制作模型前把年龄和肾小球滤过率都除以10,这里我们也要处理一下

g age1=age/10
g egfr1=egfr/10

生成两个变量后我们就可以开始了。文章作者制作了3个模型uPCX(单用肾脏标志物),clinicalparameters(单用临床指标),all(标志物+临床指标)
我们也和他一样分别制作3个模型,先做第一个模型,mn为结局变量,uPCXμgg为协变量:

logit mn uPCXμgg

绘制临床决策曲线

predict uPCX
dca mn uPCX

在这里插入图片描述
OK,这样一个简单的决策模型曲线就做好了,好像比R简单了很多,这就为不懂R的同学多了一种选择。
同理我们制作第二个模型:

logit mn age1 egfr1 dm
predict clinicalparameters

最后一个模型,这里要讲一下,stata变量不能有all这个词,我们改一下变量名,改成quanbu,意思是全部指标的意思

logit mn age1 egfr1 dm uPCXμgg
predict quanbu

最后生成图形就可以了

dca mn uPCX clinicalparameters quanbu

在这里插入图片描述
图形和作者文章的一模一样,也和我们使用R语言制作的一模一样,都是同一个大佬制作的当然一样了,但是比R容易上手了许多。
我们还可以对局部细节及标签修改比如:修改间距
在这里插入图片描述
我们还可以做出避免干预曲线(Interventions Avoided)(R语言也是可以做的,上次文章没做到)

dca mn uPCX,prob(no) intervention

在这里插入图片描述
这个曲线应该很有用,但我看文章很少有用,可能是我看的文章少
这个曲线大概的意思(按照作者原话)是:在 22% 的概率阈值下,干预的净减少约为每 100 名患者 25 次。 换句话说,在这个概率阈值下,根据标记对患者进行活检相当于将活检率降低了 25% 且不会遗漏诊断的策略。这应该是很牛逼的把。
这次就说到这里,还有许多功能留给大家自己探索,下回再说说stata COX回归临床决策曲线和怎么使用临床决策曲线验证外部模型(别人的模型)。
更多文章请关注公众号:零基础说科研
在这里插入图片描述

### 回答1: Stata临床决策曲线包是一个在临床研究广泛使用的工具,它可以帮助医生和研究人员更好地理解不同治疗方案的效果。该软件包基于统计软件Stata,并通过生成决策曲线的方式,帮助用户可视化不同治疗方案的预期效果,从而为临床决策提供支持。决策曲线是一种图形化的展示方式,用来描述不同治疗方案对于特定结果的影响。用户可以将各种因素进行考虑,包括死亡率、复发率和生存率等等因素,横轴表示时间或事件发生率,纵轴则表示结果的概率。该软件包还提供了一系列统计指标,如风险比、危险比、生存曲线等等,以方便用户对结果进行评估。Stata临床决策曲线包应用广泛,适用于各种类型的临床研究,为医学研究者提供了一种方便高效的数据分析工具,有助于为患者提供更好的医疗服务。 ### 回答2: Stata临床决策曲线包是一个专门用于生成临床决策曲线的软件包,可以帮助医学研究人员快速准确地评估和预测药物疗效的效果和风险。它将传统的生存分析方法与决策理论相结合,可以自动计算不同方案的治疗效果,每种方案的相对效益和风险,以及选择之间的潜在影响。该软件包的特点包括多种临床决策曲线方法的支持,例如Kaplan-Meier曲线、生存回归曲线等;绘图功能丰富,可以生成多种图形和表格,包括累积风险曲线、相对风险图、风险洞察图等;同时还支持复杂的统计分析方法,如多变量分析等。此外,Stata临床决策曲线包还具有友好的界面和操作简便的特点,即使是没有临床经验的用户也可以轻松上手。总之,Stata临床决策曲线包是医学研究人员进行药物疗效和安全性评估的重要工具,可以提高研究结果的准确性和科学性,从而更好地为临床实践提供参考。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天桥下的卖艺者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值