改良版自编小程序上线啦---助力孟德尔随机化(Mendelian Randomization)数据挖掘

孟德尔随机化步骤相对简单固定,一共就是3步,但是如果我们一个一个的对研究变量和结果数据进行筛选,也是挺费时间的,在上篇文章《自编R语言小程序助力孟德尔随机化(Mendelian Randomization)数据挖掘》中,咱们自编了一个小程序帮助咱们进行数据挖掘,反响还是不错的。但是这个函数也是有个明显的缺点,第一就是它是通过在线下载数据,如果你的网络不行,下载不到数据,它就会报错。
在这里插入图片描述
我这几天突然看到别的博主提供了一段while循环代码,可以针对下载不到数据的,我一看刚好可以针对我这个函数的缺陷,咱们知道while循环循环可以设定一个目标,不达目的不罢休,这样我们就可以给它添加一个设定,不下载到数据不停止,这样大大提高了成功率和程序的稳定性。
下面我来演示一下,做法基本和没改良前一样。
函数体为

Mendelian.help(exposure,outcome)

Exposure就是我们的研究变量,outcome就是我们的结果变量。

我这次特地设置复杂点,假设我们研究的想研究的原因变量有3个"ieu-a-22",“prot-b-66”,“ukb-b-15590”,想研究的结局变量有3个"finn-b-O15_MEMBR_PREMAT_RUPT",“ukb-b-12621”,“finn-b-O15_PLAC_PREMAT_SEPAR”",如果我们一个一个的做也是要花费一定时间的,如果变量更多就需要更多时间了。

我们先定义暴露变量和结果变量,你把全部变量一起上,就是说又是暴露又是结局也是可以的。

exposure<-c("ieu-a-22","prot-b-66","ukb-b-15590")
outcome<-c("finn-b-O15_MEMBR_PREMAT_RUPT","ukb-b-12621","finn-b-O15_PLAC_PREMAT_SEPAR")

一句话然后生成结果,还是非常简单的。

dat<-Mendelian.help(exposure,outcome)

在这里插入图片描述
这样就结果就生成啦,我们可以看到每个暴露变量和结果变量匹配的情况,看出有没有意义,对于大规模变量的筛选我个人认为还是有帮助的。P值的筛选是通过孟德尔随机化P值中最要的方法Inverse variance weighted提取出的P值。

最后,加上while循环以后,感觉多了一点技术含量,虽然成功率高了很多,但是还是应该在网络好的时候使用,比如白天,毕竟还是还是靠下载数据的,需要我改良后的小程序的公众号回复:代码,可以获得该程序。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天桥下的卖艺者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值