计算机视觉里的多目几何-day1

Projective Geometry and Transformations of 2D (Day1)

带上“数学”这把斧头,在立体视觉的世界里,披荆斩棘。 —佚名

本文逻辑结构:

  • 首先,总括看完本章的整体感受。
  • 然后,梳理作者的逻辑。
  • 再次,掩书而思。
  • 最后,写写课后题。

Section 1

本章用了4天看完,总共40页,大概10页/天的进度。最大的感受是,引入Projective Plane这个数学表达,把2D中的点和线都统一用一个三元组(3x1向量)来表示,并且从这个层面上说,点和线是共轭的(conjugate)。除了描述点和线,还描述了圆锥曲线(conic),最精彩的地方在于,conic联系了点和线。一个对象集合是{点,线,曲线},另一个对象集合是{投影(Projective),仿射(Affine),相似(Similarity),欧几里得(Euclidean)}四个层面的变换(transformation),这是本章的两个研究对象。前者用向量或者矩阵表示,后者全部用矩阵表示。而且对于后者,矩阵的实际意义体现为一种变换(一种动态的变化,而且这种变化与时间无关,是一种瞬间发生的变化),矩阵里的特征值理论可以派上用场。

梳理本章的逻辑结构,有利于深入理解两个对象集合之间的关系,以及集合内部各个对象之间的关系。这种关系总是可以用数学完美地表达出来。对于下一章,这就非常顺其自然地推广了。

Section 2

几何问题的研究方法

  • 纯几何方法(coordinate-free viewpoint),一个典型的例子是经典的欧拉方法。
  • 代数方法(algebraic viewpoint),由于笛卡尔引入了坐标系。

点,线,曲线在2D投影平面上的表示

对于直线 ax+by+c=0 ,对应的表示形式是 =(a,b,c)T (记为 l )。对于点 (x,y) ,对应到投影平面的形式是 (x,y,1) (记为 x )。这样一来,“点在直线上”的原始表达 ax0+by0+c=0 可以表达成 (x,y,1)(a,b,c)T=0 ,即 xTl=0

(x,y,1) (a,b,c) 都是齐次的,也就是说, k(x,y,1) (x,y,1) 表示的是同一个点, k(a,b,c) (a,b,c) 表示的是同一条直线。正是因为齐次性,这种表达方式(后面都称作“投影表示法”)才能够保持2D中的点和直线的自由度(自由度=2)。所以,通常把 (x,y,1) 写成 (x1,x2,x3) ,后者和前者的关系是 (x1/x3,x2/x3,1)

投影表示法的好处:
- 它可以表示无穷远点。如果 x3=0 的话, x1/x3=,x2/x3= ,即为无穷远点。
- 点在直线上

xTl=0

- 直线的交点
x=l1×l2

- 两点确定的直线
l=x1×x2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值