第一部分成员负责构建特征(或叫因子),这些特征主要包括基本面、技术和另类特征。基本面特征主要是市值、所属行业等一些基本信息;技术特征主要跟成交量、涨幅有关系;另类特征就是一般就是少部分人拥有的特征,比如股票新闻的情感分析等。
第二部分成员负责生成预测模型,其会利用不同的label不同的特征训练不同的预测模型,这些不同的预测模型会产生不同的预测值。有些预测值可能是概率,有些可能涨幅,有些又有可能是超额等,....。
第三部分成员主要负责策略主体框架的构建,这部分成员会利用模型产生的预测值进行策略的构建,如何进行换仓及如何组合多个预测值等一系列的负责工作都是由这部分人来完成。
第四部分成员主要负责优化下单算法,当策略给出了买卖信号,好的下单算法可以大大的降低股票买入或卖出的成本。对于一些快速上涨的股票,可以挂高价快速买入从而迅速获得超额收益,对于慢涨的股票可以慢慢的挂单等被动成交。当然不同的私募可能在任务分配上会略有不同,但主流的量化指增策略其整一个完整的流程就大致是这样的。