时序预测:使用LSTM和Transformer模型
时间序列预测在金融、能源、天气等领域有广泛的应用。本文将介绍如何利用LSTM和Transformer模型进行时序预测,特别是股票价格预测。
介绍
LSTM模型
长短期记忆网络(LSTM)是一种特殊的递归神经网络(RNN),能够捕捉数据中的长期依赖关系,非常适合处理和预测时间序列中较长跨度依赖的信息。
Transformer模型
Transformer模型通过自注意力机制,能够更好地捕获序列中任意两个位置之间的依赖关系,具有并行计算效率高的优点。近年来,Transformer在自然语言处理领域取得了成功,并逐渐应用于时间序列问题。
应用场景
- 金融市场预测:如股票价格、外汇汇率、商品价格。
- 能源负荷预测:电力需求、燃气消费量。
- 交通流量预测:如高速路段车流量。
- 健康监控:病人生命体征参数预测。