动态阈值和滑动窗口自适应

看起来您的异常检测算法在处理不同输入测试用例时,由于数据分布的变化,导致无法使用统一的阈值进行有效判断。为了解决这个问题,可以考虑以下几种改进方法:

  1. 动态阈值:根据数据的统计特性动态调整阈值,而不是使用固定的阈值。
  2. 自适应方法:使用滑动窗口或自适应算法,根据最近的数据调整检测标准。
  3. 多指标融合:综合多个指标的统计特性,确定更为稳健的异常判定标准。

以下是针对您的 detectAnomaly 函数的具体修改建议和代码示例。

1. 动态阈值调整

将阈值根据数据的均值和标准差动态计算,而不是依赖于固定的阈值。这可以提高算法对不同数据分布的适应性。

func (d *TimeSeriesAnomalyDetector) detectAnomaly(newValue float64, recentValues []DataPoint, previousValue float64, windowSize int, impulseFactorParams ImpulseFactorParams, crestFactorParams CrestFactorParams, changeRateParams ChangeRateParams, rmsParams RMSParams, shapeFactorParams ShapeFactorParams) (bool, string, map[string]float64) {
	metrics := make(map[string]float64)
	reasons := make([]string, 0)
	window := getWindowValues(recentValues, windowSize)
	// 计算各项指标
	metrics["ImpulseFactor"] = d.calculateImpulseFactor(window)
	metrics["CrestFactor"] = d.calculateCrestFactor(window)
	metrics["ChangeRate"] = d.calculateChangeRate(newValue, previousValue)
	metrics["RMS"] = d.calculateRMS(window)
	metrics["ShapeFactor"] = d.calculateShapeFactor(window)
	// 动态计算阈值
	dynamicThresholds := d.calculateDynamicThresholds()
	// 判断各项指标是否超过动态阈值
	if metrics["ImpulseFactor"] > dynamicThresholds["ImpulseFactor"] {
		reasons = append(reasons, fmt.Sprintf("脉冲因子: %.3f > %.3f", metrics["ImpulseFactor"], dynamicThresholds["ImpulseFactor"]))
	}
	if metrics["CrestFactor"] > dynamicThresholds["CrestFactor"] {
		reasons = append(reasons, fmt.Sprintf("峰值因子: %.3f > %.3f", metrics["CrestFactor"], dynamicThresholds["CrestFactor"]))
	}
	if metrics["ChangeRate"] > dynamicThresholds["ChangeRate"] {
		reasons = append(reasons, fmt.Sprintf("变化率: %.3f > %.3f", metrics["ChangeRate"], dynamicThresholds["ChangeRat
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值