线性代数-矩阵的逆

目录

1.矩阵逆的引入以及矩阵逆的定义

2.如何判断矩阵是否可逆以及逆矩阵的求法

3.分块矩阵的加减乘运算

​4.矩阵的逆的常用性质和特殊矩阵的逆

5.矩阵逆在机器学习线性回归算法中的运用。

6.分块矩阵

6.1加减乘运算

 6.2 转置运算和逆运算

 6.3 协方差矩阵的运算


1.矩阵逆的引入以及矩阵逆的定义

  •  矩阵的是比较容易计算和理解的。
  • E是单位矩阵。
  • 矩阵的逆可以通过矩阵的乘法去理解。
  • BA=AB=E 则A,B互为逆矩阵。

2.如何判断矩阵是否可逆以及逆矩阵的求法

上面知道逆矩阵的定义,接下来就是判断这个逆矩阵是不是存在,只有存在的情况下,才能进一步求出其逆矩阵。

  • 行列式是一个实数。
  • 行列式不等于零,则可逆,而且可以根据伴随矩阵进行计算。
  • 逆矩阵是唯一的。

3.分块矩阵的加减乘运算

4.矩阵的逆的常用性质和特殊矩阵的逆

常用的三种特殊矩阵的逆矩阵。

 5.矩阵逆在机器学习线性回归算法中的运用。

  • 样本个数等于特征维度且是可逆的,则可用矩阵求逆的方式,进行回归分析。

6.分块矩阵

6.1加减乘运算

  •  分块矩阵的运算和普通矩阵的运算规则是类似的。
  • 分块矩阵的计算量降低。

 6.2 转置运算和逆运算

 6.3 协方差矩阵的运算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无敌三角猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值