提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
文章目录
高斯混合概率假设密度(GM-PHD)滤波器是PHD滤波器的一种实现,它通过使用高斯混合模型来近似目标的强度分布。GM-PHD滤波器的递推过程主要包括预测(Prediction)和更新(Update)两个步骤,下面结合公式详细阐述这两个步骤及其参数的物理意义。
1. 预测步骤
在预测步骤中,假设上一时刻的目标分布由一组高斯成分表示,每个高斯成分代表一个可能的目标状态及其不确定性。预测当前时刻的目标分布涉及两个部分:生存目标的预测和新生目标的出现。
(1) 生存目标的预测:对于每一个高斯成分,通过状态转移模型预测其在当前时刻的状态。如果第 i i