GM-PHD递推过程及其物理意义

本文介绍了GM-PHD滤波器的预测和更新步骤,包括生存目标预测、新生目标出现、非检测更新和检测更新。在预测步骤中,通过状态转移矩阵和过程噪声协方差矩阵预测目标状态。更新步骤则考虑观测数据,更新高斯成分的权重、均值和协方差。每个参数都有其物理意义,如Fk、Qk描述系统动态,新生目标高斯成分反映新目标不确定性,PD表示检测概率,Hk和观测噪声协方差定义观测不确定性。
摘要由CSDN通过智能技术生成

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


高斯混合概率假设密度(GM-PHD)滤波器是PHD滤波器的一种实现,它通过使用高斯混合模型来近似目标的强度分布。GM-PHD滤波器的递推过程主要包括预测(Prediction)和更新(Update)两个步骤,下面结合公式详细阐述这两个步骤及其参数的物理意义。

1. 预测步骤

在预测步骤中,假设上一时刻的目标分布由一组高斯成分表示,每个高斯成分代表一个可能的目标状态及其不确定性。预测当前时刻的目标分布涉及两个部分:生存目标的预测和新生目标的出现。

(1) 生存目标的预测:对于每一个高斯成分,通过状态转移模型预测其在当前时刻的状态。如果第 i i

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值