ChatGPT之后,值得关注的垂直领域大模型

文章介绍了垂直领域大模型的优势和劣势,如领域专业性、高质量输出,但也有数据需求和成本问题。MathGPT是教育领域的数学模型,BloombergGPT专注于金融,BenTsao模型应用于医学,LaWGPT则聚焦于法律,这些示例展示了AI在不同行业的深入应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

垂直领域大模型是指在特定的领域或行业中经过训练和优化的大型语言模型。与通用语言模型相比,垂直领域大模型更专注于某个特定领域的知识和技能,具备更高的领域专业性和实用性。

ef985f4062b18d80ae4e5de26384423a.jpeg

题图 from unsplash

与通用大模型相比,垂直领域大模型具有以下优势和劣势:

优势:

  1. 领域专业性:垂直领域大模型经过专门的训练,能够更好地理解和处理特定领域的知识、术语和上下文。

  2. 高质量输出:由于在特定领域中进行了优化,垂直领域大模型在该领域的输出质量通常比通用大模型更高。

  3. 特定任务效果更好:对于特定领域的任务,垂直领域大模型通常比通用大模型表现更好。

劣势:

  1. 数据需求和训练成本:垂直领域大模型需要大量的特定领域数据进行训练,这可能会面临数据收集和标注的挑战。

  2. 适应性限制:垂直领域大模型在特定领域中的适应性较强,但在其他领域的表现可能相对较弱。

  3. 更新和维护成本:由于特定领域的知识和要求经常变化,垂直领域大模型需要定期更新和维护,以保持与最新发展的同步。

下面介绍几个知名度较高的垂直领域大模型,涉及教育、金融、医学、法律四个领域。

MathGPT 教育大模型

学而思正在进行自研数学大模型的研发,命名为MathGPT。面向全球数学爱好者和科研机构,以数学领域的解题和讲题算法为核心。据透露,MathGPT将先从中小学数学做起,逐步覆盖全年龄学段和解题种类。

目前已经取得阶段性成果,并将于年内推出基于该自研大模型的产品级应用。

BloombergGPT 金融大模型

近期根据彭博社报告显示,其构建迄今为止最大的特定领域数据集,并训练了专门用于金融领域的LLM,开发了拥有500亿参数的语言模型—BloombergGPT。

BloombergGPT 和 GPT模式一样,也是基于 Transformer架构的,采用的是译码器的技术路线。通过比较, BloombergGPT模型参数为500亿,在GPT-2 (1.5亿)和GPT-3 (1750亿)之间。Bloomberg构建了目前规模最大的金融数据集 FINPILE,通过对通用文本+金融知识的混合训练,使得 BloombergGPT在执行金融任务方面的表现超过了现有的通用 LLM模型,而在通用场景方面的表现则与现有的通用 LLM模型基本持平。

BenTsao 中文医学模型

https://github.com/SCIR-HI/Huatuo-Llama-Med-Chinese

本草原名华驼(HuaTuo),是一个基于中文医学知识的LLaMA-7B微调模型。通过医学知识图谱和GPT3.5 API构建了中文医学指令数据集,并在此基础上对LLaMA进行了指令微调,提高了LLaMA在医疗领域的问答效果。

尝试利用GPT3.5 API将医学文献中的【结论】作为外部信息融入多轮对话中,在此基础上对LLaMA进行了指令微调。目前,团队只开放针对"肝癌"单个疾病训练的模型参数。在未来,我们计划发布融入文献结论的医学对话数据集,并且会针对“肝胆胰”相关16种疾病训练模型。

LaWGPT 中文法律知识模型

https://github.com/pengxiao-song/LaWGPT/

LaWGPT 是一系列基于中文法律知识的开源大语言模型,该系列模型在通用中文基座模型(如 Chinese-LLaMA、ChatGLM 等)的基础上扩充法律领域专有词表、大规模中文法律语料预训练,增强了大模型在法律领域的基础语义理解能力。在此基础上,构造法律领域对话问答数据集、中国司法考试数据集进行指令精调,提升了模型对法律内容的理解和执行能力。

不远的将来会有更多垂直领域的大模型面世,百模大战已经拉开序幕,AI渗透到千行百业只是时间问题,我们一起见证机器崛起吧。


扩展阅读:

### 大规模机器学习模型的国内外对比与发展 #### 国内外技术现状 当前,国内外大规模机器学习模型的技术发展呈现出显著差异。在国内,尽管近年来取得了快速的进步,但在某些关键技术环节上仍存在不足之处,尤其是在数据清洗、标注精度、模型设计创新以及训练推理技术积累方面[^1]。这些因素直接影响了国内模型的整体性能表现。 相比之下,国外以OpenAI为代表的机构通过长期的研发投入,在基础理论研究和技术实现层面占据领先地位。例如,其推出的ChatGPT系列不仅具备强大的对话能力,还展现了卓越的语言理解和生成水平。然而值得注意的是,中国企业在追赶过程中逐渐形成了自己独特的竞争优势——更贴近本地市场需求的应用场景开发能力和庞大的中文语料库支持[^2]。 #### 通用大模型 vs 垂直大模型 在具体方向的选择上,目前行业内存在着两条并行发展的路径:一是追求覆盖面广、适应性强的通用型大模型;二是针对特定行业需求定制化打造高度专业化解决方案的垂直类大模型。两者各有千秋: - **通用大模型**因其能够处理多种任务类型而备受青睐,适用于从文本创作到图像识别等多个领域。这类模型通常拥有超大规模参数量级,并经过海量多源异构数据集预训练而成,从而获得较强的泛化能力。 - 而对于那些需要极高精确度或者特殊专业知识才能完成的任务来说,则更适合采用专门优化过的垂直领域专用版本。这种类型的架构往往会在原有基础上进一步微调适配相应业务逻辑特征,进而提升效率效果指标。 #### 技术趋势展望 未来几年内可以预见几个重要发展方向: 首先是关于跨模态理解与生成方面的深入探索。随着多媒体内容形式越来越多样化,单一模式下的分析已经难以满足实际应用中的复杂要求。因此如何有效融合视觉听觉触觉等多种感知维度的信息成为新的热点课题之一[^3]。 其次是量子计算引入所带来的潜在影响也不可忽视。虽然现阶段该分支尚处于初级实验验证阶段,但从长远来看它极有可能彻底改变现有算法框架结构乃至整个产业格局[^4]。 ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom") model = AutoModelForCausalLM.from_pretrained("bigscience/bloom") def generate_text(prompt): inputs = tokenizer.encode(prompt, return_tensors="pt") outputs = model.generate(inputs, max_length=50) result = tokenizer.decode(outputs[0], skip_special_tokens=True) return result print(generate_text("Explain the difference between general and specialized AI models")) ``` 上述代码片段展示了基于Hugging Face Transformers库加载BLOOM这样一个开源大型语言模型实例来执行简单文本生成操作的过程。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MavenTalk

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值