两大国产多模态大模型推荐

GLM-4V

智谱AI 开放平台提供一系列具有不同功能和定价的大模型,包括通用大模型、超拟人大模型、图像大模型、向量大模型等,并且支持使用您的私有数据对模型进行微调。GLM-4V 就是在不牺牲任何NLP任务性能的情况下,实现了视觉语言特征的深度融合;支持视觉问答、图像字幕、视觉定位、复杂目标检测等各类图像理解任务。

资料地址:https://open.bigmodel.cn/dev/howuse/glm-4v
在这里插入图片描述
支持视觉问答、图像字幕、视觉定位、复杂目标检测等各类图像理解任务,具有2k上下文。 价格换算成M Tokens计价的话是50元/M Tokens。与下面的step-1v对比,性价比不高。

Step-1V

阶跃星辰推出的step-1v系列多模态大模型,该模型拥有强大的图像理解能力,暂时只开放文本和图像输入,且仅支持文本生成。上下文长度分别为8k和32k。是由前微软全球副总裁姜大昕创立,大模型五虎将之后,阶跃星辰异军突起,加入五虎,成为大模型六小强之一。

资料地址:https://www.stepfun.com/#step1v
在这里插入图片描述
使用限制

  • 单次请求图像数量上限:除了模型长下文长度约束,step-1v系列模型限制了单次请求图像不能超过5张。
  • 轮次较多的对话,建议先通过多模态模型对图像进行描述或总结,再放入轮次历史作为文本理解的上下文。
  • 单次请求图像体积大小限制:多张图片总大小控制在20M以内。
  • 图像元数据:模型无法获得图像元数据信息,如文件路径、文件名、文件大小、原始分辨率、作者、相机型号、地理位置信息等。在输入模型前,预处理阶段会将元数据清除,以免泄露隐私。此外,图像也会被缩放到最佳尺寸。
  • 字体过小的文本:文字过小可能会影响识别效果。
  • 旋转和裁切:不完整或非正位可能会影响识别效果。
  • 计数:模型输出的数值可能不是完全精确,而是估算的值。
  • 准确性:在某些情况下,模型可能会生成不正确的描述或标题。请勿在有严重后果的场景依赖模型推理结果。
### 国内外多模态大模型特点对比 国内多模态大模型通常注重于融合多种数据源,如文本、图像和语音,在特定应用场景下提供定制化解决方案[^1]。这些模型往往针对中文语境进行了优化处理,能够更好地理解并生成自然流畅的汉语表达。 国外尤其是美国开发的规模预训练框架则更强调通用性和跨领域迁移能力,通过海量互联网公开资源进行无监督学习来获取广泛的知识表示[^2]。这类架构倾向于构建超规模参数量级的基础模型,并探索其在不同任务间的泛化潜力。 ### 性能差异分析 就计算效率而言,由于硬件设施以及算法实现上的区别,国际上领先的AI实验室所研发的产品可能具备更快的速度与更低能耗表现;然而随着国产GPU技术进步及分布式训练系统的完善,者之间的差距正在逐渐缩小[^3]。 关于准确性方面,对于某些本地化的视觉识别或语言翻译场景,经过针对性调优后的本土企业出品可能会占据一定优势;而在涉及全球范围内的复杂推理挑战时,则可能是海外开源项目凭借庞的社区贡献而胜出一筹[^4]。 ### 发展现状综述 近年来中国科技巨头纷纷加投入力度追赶世界先进水平,不仅推出了具有自主知识产权的技术路线图,还积极促进产学研合作生态建设,加速科研成果转化落地进程[^5]。与此同时,西方国家持续引领理论创新前沿方向,不断推出新型网络结构设计思路和技术标准制定建议,推动整个行业向前发展[^6]。 ```python import matplotlib.pyplot as plt # 假设这是模型在中国市场上的应用效果评估分数分布情况可视化展示 plt.figure(figsize=(8, 6)) data_domestic = [0.75, 0.80, 0.85, 0.90, 0.92] data_foreign = [0.70, 0.78, 0.82, 0.88, 0.91] labels = ['Model A', 'Model B', 'Model C', 'Model D', 'Model E'] width = 0.35 x = range(len(data_domestic)) fig, ax = plt.subplots() rects1 = ax.bar(x, data_domestic, width, label='Domestic Models') rects2 = ax.bar([p + width for p in x], data_foreign, width,label='Foreign Models') ax.set_ylabel('Performance Score') ax.set_title('Comparison of Domestic and Foreign Multimodal Large Models Performance on Chinese Market') ax.set_xticks([r + width / 2 for r in x]) ax.set_xticklabels(labels) plt.legend() plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MavenTalk

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值