Fast-Lio2代码及论文解析2

该博客详细解析了Fast-Lio2算法,包括系统框架、状态方程、向前传播、反向传播、观测模型和迭代更新等关键步骤。通过IMU数据和LiDAR点云融合,实现运动状态估计和点云畸变校正。文章介绍了如何利用IMU数据预测名义状态,并结合点云观测进行误差状态估计,以提高定位精度。
摘要由CSDN通过智能技术生成

目录

一、系统框架

二、状态方程

三、向前传播

四、反向传播

五、观测模型

 六、迭代更新


一、系统框架

  • 系统输入为IMU测量数据和LiDAR点云数据,分别用作于系统的状态预测更新阶段;
  • 点云数据频率较低而IMU为高频数据,IMU测量数据到来后,系统状态根据IMU运动微分方程不断向前传播;
  • 由于载体处于运动状态,在一帧点云积累完毕发出后,并非所有点云都是在数据发出时刻采集到的,此时我们可以根据IMU向前传播的计算结果,将所有点云都校正到点云数据发出的时刻;
  • 随后,根据流形卡尔曼滤波(ESKF),将观测模型线性化后得到误差观测方程,计算残差与对应的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

他人是一面镜子,保持谦虚的态度

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值