张宇1000题线性代数 第九章 二次型

目录

A A A

1.二次型 f ( x 1 , x 2 , x 3 ) = x T f(x_1,x_2,x_3)=\bm{x}^\mathrm{T} f(x1,x2,x3)=xT的秩为(  )。
( A ) 0 ; (A)0; (A)0;
( B ) 1 ; (B)1; (B)1;
( C ) 2 ; (C)2; (C)2;
( D ) 3. (D)3. (D)3.

  以主对角线为对称线,将对称线两侧对称点上的两元素和的平均值置换,直接得到二次型的矩阵 A = [ 1 − 1 1 − 1 − 3 − 3 1 − 3 0 ] \bm{A}=\begin{bmatrix}1&-1&1\\-1&-3&-3\\1&-3&0\end{bmatrix} A=111133130。二次型的秩即为二次型矩阵的秩,于是,对 A \bm{A} A作初等行变换,有 A = [ 1 − 1 1 − 1 − 3 − 3 1 − 3 0 ] → [ 1 − 1 1 0 − 2 − 1 0 0 0 ] \bm{A}=\begin{bmatrix}1&-1&1\\-1&-3&-3\\1&-3&0\end{bmatrix}\rightarrow\begin{bmatrix}1&-1&1\\0&-2&-1\\0&0&0\end{bmatrix} A=111133130100120110,知 r ( A ) = 2 r(\bm{A})=2 r(A)=2,即二次型的秩为 2 2 2,故选 ( C ) (C) (C)。(这道题主要利用了矩阵的秩求解

3.设 A , B \bm{A},\bm{B} A,B n n n阶正定矩阵,下列各矩阵中不一定是正定矩阵的是(  )。
( A ) A B ; (A)\bm{AB}; (A)AB;
( B ) A + B ; (B)\bm{A}+\bm{B}; (B)A+B;
( C ) A − 1 + B − 1 ; (C)\bm{A}^{-1}+\bm{B}^{-1}; (C)A1+B1;
( D ) 3 A + 2 B . (D)3\bm{A}+2\bm{B}. (D)3A+2B.

  由于 A , B \bm{A},\bm{B} A,B不一定可交换, A B \bm{AB} AB不对称,所以 A B \bm{AB} AB为非正定矩阵。故选 ( A ) (A) (A)。(这道题主要利用了矩阵乘法求解

11.若 f ( x 1 , x 2 , x 3 ) = 2 x 1 2 + x 2 2 + x 3 2 + 2 x 1 x 2 − t x 2 x 3 f(x_1,x_2,x_3)=2x_1^2+x_2^2+x_3^2+2x_1x_2-tx_2x_3 f(x1,x2,x3)=2x12+x22+x32+2x1x2tx2x3是正定二次型,则 t t t的取值范围是______。

  依题设,题中的二次型矩阵为 A = [ 2 1 0 1 1 − t 2 0 − t 2 1 ] \bm{A}=\begin{bmatrix}2&1&0\\1&1&-\cfrac{t}{2}\\0&-\cfrac{t}{2}&1\end{bmatrix} A=210112t02t1
  于是,由顺序主子式法,二次型 f f f正定,则必有 ∣ A 1 ∣ = 2 > 0 , ∣ A 2 ∣ = ∣ 2 1 1 1 ∣ = 1 > 0 , ∣ A 3 ∣ = ∣ 2 1 0 1 1 − t 2 0 − t 2 1 ∣ = 1 − t 2 2 > 0 |\bm{A}_1|=2>0,|\bm{A}_2|=\begin{vmatrix}2&1\\1&1\end{vmatrix}=1>0,|\bm{A}_3|=\begin{vmatrix}2&1&0\\1&1&-\cfrac{t}{2}\\0&-\cfrac{t}{2}&1\end{vmatrix}=1-\cfrac{t^2}{2}>0 A1=2>0,A2=2111=1>0,A3=210112t02t1=12t2>0,解得 − 2 < t < 2 -\sqrt{2}<t<\sqrt{2} 2

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值