【文献解析】Voxelmap++——一种自适应体素的LIO

大家好呀,我是一个SLAM方向的在读博士,深知SLAM学习过程一路走来的坎坷,也十分感谢各位大佬的优质文章和源码。随着知识的越来越多,越来越细,我准备整理一个自己的激光SLAM学习笔记专栏,从0带大家快速上手激光SLAM,也方便想入门SLAM的同学和小白学习参考,相信看完会有一定的收获。如有不对的地方欢迎指出,欢迎各位大佬交流讨论,一起进步。博主创建了一个科研互助群Q:951026257,欢迎大家加入讨论。

VoxelMap++: Mergeable Voxel Mapping Method for Online LiDAR(-Inertial) Odometry
论文地址:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10321658
代码地址:GitHub - hku-mars/VoxelMap: [RA-L 2022] An efficient and probabilistic adaptive voxel mapping method for LiDAR odometry

一、 文章概述

1. 问题导向

在点云配准过程中,不可避免地要频繁地寻找K个最近邻点来拟合平面,这对于KD-Tree来说是一项耗时的任务。KD-Tree中最近邻搜索的时间复杂度是对数的,这对实时性能提出了很大的挑战。VoxelMap为LiDAR里程计引入了一种高效的、概率自适应体素映射,在稳健性和效率方面优于其他方法。然而,VoxelMap仍在进行改进,以达到最佳的完美水平。在冗余的六自由度平面表示中使用点和法线矢量,将导致不必要的资源浪费。

2.目标

如果能够有效地区分共面关系,那么将体素内的小平面合并成更大的平面将大大提高平面的精度,同时也提高了LIDAR(惯性)里程计的定位精度。同时,合并后可以释放数以千计的内存资源。因此,为了进一步提高LiDAR(-惯性)里程计的性能,本文提出了一种新的具有三自由度平面表示的在线可合并体素映射方法VoxelMap++。

3.摘要

这封信介绍了VoxelMap++:一种具有平面合并的体素映射方法,可以有效提高基于LiDAR(惯性)的同步定位与映射(SLAM)的精度和效率。该图是体素的集合,其中包含具有 3DOF 表示和相应协方差估计的一个平面特征。考虑到地图将包含大量共面特征(子平面),这些子平面可以被视为具有较大平面(父平面)的协方差的测量。因此,我们设计了一个基于并查的平面合并模块。该合并模块能够区分各种体素内的共面关系,然后合并这些子平面以通过最小化协方差迹来估计父平面。合并后,父飞机比子飞机表现出更准确,不确定性降低,从而提高了LiDAR(惯性)里程计的准确性。不同环境下的实验证明了 VoxelMap++ 与其他最先进的方法相比的优越性(请参阅我们随附的视频)。我们的实现在 GitHub 上开源,适用于非重复扫描激光雷达和传统扫描激光雷达。

4.贡献

  1. 我们通过最小二乘估计对平面拟合和协方差估计方法进行改进,重点是工程实现而不是精度。这种增强显著提高了协方差估计的效率并减少了内存使用。
  2. 提出了一种基于并查找的在线体素合并方法。体素中的每个共面特征(子平面)将被视为一个大平面(父平面)的测量值。合并模块不仅提高了平面拟合的精度,而且减少了整体图中的不确定性,从而提高了状态估计的精度。
  3. 我们将voxelmap++与其他最先进的算法在公共结构化城市数据集和其他私人挑战性场景中进行了比较,以证明该算法在准确性和效率方面的优势。
  4. 我们使voxelmap++适应不同类型的激光雷达(多旋转激光雷达和非传统固态激光雷达),并在我们的GitHub上开源,以分享我们的发现并为社区做出贡献。

二、 方法解析

2.1 系统pipeline


基于迭代误差状态卡尔曼滤波(IESKF)的LiDAR原点预处理方法和状态估计方法类似于FAST-LIO和VoxelMap。
在LiDAR原始处理之后,使用点到面配准来估计系统状态,如第III-C节所示。在注册时,首先使用空间散列来查询Union-Find的子节点。然后,使用指针通过子节点找到父节点。最后采用父节点的三自由度平面表示进行配准,由于第III-B节中的平面合并,比子节点的配准更准确。
状态估计后,新扫描中的每个点将被投影到相应的体素中,然后构建或更新由哈希表组织的体素图(键为体素 id,值是平面拟合结果 P)。体素图的构建和更新在第三节 B2 中介绍。这些新点将逐步用于 3DOF 平面拟合和协方差估计,这将在第三节 A 中介绍。
然后,收敛后的平面将用于平面合并,这将在第三节 B3 中介绍。在此模块中,体素中的子平面 Pk 将基于并查集合并为父平面 Pf。同时,Pf 的平面估计结果将比 Pk 更准确,从而提高 LiDAR(-惯性) 里程计的精度。

2.2 3DOF 平面拟合和协方差估计

由于平面特征的可用性,我们只在环境中使用平面特征。在每个体素中,我们维护一个3DOF平面拟合结果
首先,对LiDAR测量噪声的分析,计算出局部LiDAR帧内每个LiDAR点的协方差,转换到世界坐标系下。


然后,我们利用线性最小二乘法计算平面的 3DOF 表示。假设可以从该点云中提取一个平面,通过沿 z 分量(主轴)进行归一化,将其参数化为(4)。但是,当平面法线的 z 分量接近于零时,此表达式是奇异的。通过计算点云到每个坐标轴的投影,可以轻松解决此问题,投影方差最小的轴就是主轴。

详情请见。。。

 【文献解析】Voxelmap++ - 古月居 (guyuehome.com)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

桦树无泪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值