本文首发: AIWalker
https://arxiv.org/abs/2312.09158
https://glee-vision.github.io
AIWalker后台回复【GLEE】即可下载原文与译文。
在这项工作中,我们提出了GLEE:一个对象级的基础模型,用于定位和识别图像和视频中的对象。
- 通过一个统一的框架,GLEE可以在开放世界场景中完成任意物体的检测、分割、跟踪、接地和识别,以完成各种物体感知任务。
- 采用内聚学习策略,GLEE从不同监督级别的不同数据源中获取知识,以形成通用对象表示,擅长零次迁移到新数据和任务。
具体来说,我们采用图像编码器,文本编码器和视觉解码器来处理多模态输入,从而能够同时解决各种以对象为中心的下游任务,同时保持最先进的性能。 通过对来自不同基准的500多万张图像进行广泛的训练,GLEE表现出显着的多功能性和改进的泛化性能,有效地处理下游任务,而不需要特定于任务的适应。 通过集成大量的自动标注数据,我们进一步增强了其零炮概化能力。 此外,GLEE能够被集成到大型语言模型中,作为基础模型为多模态任务提供通用的对象级信息。 我们希望ÿ