点云检测学习笔记2022

本文介绍了点云检测的多个技术框架,包括mmdet、openpcdet、SECOND等,探讨了稀疏卷积、体素化方法如Point Pillars、CenterPoint,以及BEV投影的YOLO3D、PIXOR等。文章详细阐述了各框架的特点和运算机制,如基于RangeView的RangeDet和Range Sparse Net,以及采用图结构的Object DGCNN。
摘要由CSDN通过智能技术生成

目录

openpcdet

3D跟踪

SECOND

稀疏卷积

基于体素(3)Point Pillars

基于体素 ——CenterPoint

基于BEV投影 —YOLO3D/Complex-YOLO

基于BEV投影 PIXOR

基于RangeView -RangeDet

基于RangeView-Range Sparse Net

基于图结构——Object DGCNN


mmdet

openpcdet

GitHub - open-mmlab/OpenPCDet: OpenPCDet Toolbox for LiDAR-based 3D Object Detection.

lidar点云检测综述:

激光雷达:3D物体检测算法 - 知乎

点云物体检测算法的综述中提到了四个发展阶段。在最开始的萌芽期中,多视图的方法占据主流。视图(View),也就是点云数据的不同表示方法,常用的包括Bird's Eye View (BEV),Point View(PV)和Range View (RV)。

参见:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值