YOLOv8改进 | 细节涨点篇 | DySample一种超级轻量的动态上采样算子(效果完爆CARAFE)

本文介绍了DySample,一种轻量级且高效的动态上采样器,它优于传统内核上采样器,减少参数和计算量。DySample在语义分割和目标检测等任务中表现出色,通过点采样方法实现,降低了GPU内存需求。文章提供了Dysample的核心原理、代码实现和在YOLOv8中的添加教程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、 本文介绍

本文给大家带来的改进机制是一种号称超轻量级且有效的动态上采样器——DySample。与传统的基于内核的动态上采样器相比,DySample采用了一种基于点采样的方法,相比于以前的基于内核的动态上采样器,DySample具有更少的参数、浮点运算次数、GPU内存和延迟。此外,DySample在包括语义分割、目标检测、实例分割、全景分割和单目深度估计在内的五个预测任务中,性能均优于其他上采样器(截至目前最有效的上采样算子),本文将通过介绍其主要原理后,提供该机制的代码和修改教程,并附上运行的yaml文件和运行代码,小白也可轻松上手

欢迎大家订阅我的专栏一起学习YOLO!  

专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备 

目录

一、 本文介绍

二、 Dysample的核心原理 

三、 Dysample的核心代码

四、 手把手教你添加Dysample机制 

4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四 

五、Dysample的yaml文件和运行记录

5.1 Dysample的yaml文件

评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值