Seurat -- Introduction to scRNA-seq integration 跟随学习记录

本文详细介绍了在Seurat中对RNA-seq数据进行预处理、标准化(如NormalizeData和ScaleData)、PCA分析、聚类(FindClusters)以及样本整合(IntegrateLayers)的过程,展示了如何从原始ifnb数据对象逐步构建和优化数据对象以进行后续分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据是如何转换的

seurat object 中assays R N A @ l a y e r s RNA@layers RNA@layerscounts 存放了 expression matrix (counts)
NormalizeData(sce) 后 assays R N A @ l a y e r s RNA@layers RNA@layersdata 存放了 normalization后的数据
FindVariableFeatures(sce) 就是把一些细胞高表达一些细胞低表达的高变基因抽出来放在 assays R N A @ f e a t u r e s 下面 S c a l e D a t a ( s c e ) 把上述的高变基因中心化,数据放在 a s s a y s RNA@features下面 ScaleData(sce) 把上述的高变基因中心化,数据放在assays RNA@features下面ScaleData(sce)把上述的高变基因中心化,数据放在assaysRNA@layers$scale.data 下面

RunPCA(sce) 使用assays R N A @ l a y e r s RNA@layers RNA@layersscale.data 数据进行PCA降维
FindNeighbors(sce) 根据PCA结果@reductions$pca 构建SNN图 结果放在@graphs下面

FindClusters(sce) 根据@graphs下面的数据寻找cluster 结果放到 @meta.data$unintegrated_clusters 下面

如果进行了样本整合:
IntegrateLayers(object = sce, method = CCAIntegration, orig.reduction = “pca”, new.reduction = “integrated.cca”)该方法使用PCA和scale.data下面的数据进行学习,产生一个新的降维数据 @reductions$integrated.cca,然后这个降维数据用于后续的构建SNN图和聚类

原始ifnb数据对象

library(Seurat)
library(SeuratData)
library(patchwork)

# install dataset
InstallData("ifnb")

# load dataset
ifnb <- LoadData("ifnb")

原始的ifnb数据对象是什么样子?
在这里插入图片描述

Splits object后的数据对象

在这里插入图片描述

数据对象构建完成后的标准流程

# run standard anlaysis workflow
ifnb <- NormalizeData(ifnb)
ifnb <- FindVariableFeatures(ifnb)
ifnb <- ScaleData(ifnb)
ifnb <- RunPCA(ifnb)

ifnb <- FindNeighbors(ifnb, dims = 1:30, reduction = "pca")
ifnb <- FindClusters(ifnb, resolution = 2, cluster.name = "unintegrated_clusters")

ifnb <- RunUMAP(ifnb, dims = 1:30, reduction = "pca", reduction.name = "umap.unintegrated")
DimPlot(ifnb, reduction = "umap.unintegrated", group.by = c("stim", "seurat_clusters"))

ifnb <- RunUMAP(ifnb, dims = 1:30, reduction = "integrated.cca")

在这里插入图片描述

Normalization后的数据对象

在这里插入图片描述

scale 后的数据对象

在这里插入图片描述

不同的样本进行整合

ifnb <- IntegrateLayers(object = ifnb, method = CCAIntegration, orig.reduction = "pca", new.reduction = "integrated.cca",
    verbose = FALSE)

# re-join layers after integration
ifnb[["RNA"]] <- JoinLayers(ifnb[["RNA"]])

ifnb <- FindNeighbors(ifnb, reduction = "integrated.cca", dims = 1:30)
ifnb <- FindClusters(ifnb, resolution = 1)
JoinLayers干了什么

在这里插入图片描述

<think>好的,用户在使用Seurat包进行数据集成时遇到了GetAssayData的错误,提示与v5 assay中的多个layers有关。首先,我需要回忆Seurat的版本更新情况。用户提到他们安装了Seurat 4.0.0版本,但根据引用[3],可能他们在尝试降级到旧版本来解决问题。不过,错误信息中提到的是v5 assay,而Seurat v5引入了新的数据结构,这可能与旧版本函数不兼容有关。 接下来,我需要确定错误的具体原因。错误信息指出GetAssayData在v5 assay中无法处理多个layers。在Seurat v5中,默认使用分层数据存储(layers),例如counts、data等可能存储在不同的层中。而旧版本的函数可能在调用GetAssayData时没有指定layer参数,导致无法正确读取数据,从而报错。 查阅引用[1]中的错误信息,用户尝试将Seurat对象转换为SingleCellExperiment对象时出现此问题。可能的解决方案包括明确指定要使用的layer,或者转换到v5兼容的数据结构。另外,用户可能在运行IntegrateData函数时,使用了v5 assay,而集成方法可能需要调整参数以适应新的数据结构。 此外,用户可能未正确更新相关依赖包,或者函数调用方式不符合v5的要求。例如,在FindMarkers函数中(如引用[2]所示),可能需要检查是否指定了正确的assay或layer参数。 综合这些信息,解决方案应包括检查Seurat版本,确保使用v5兼容的函数,或在数据转换时明确指定layer。另外,提醒用户在降级版本时可能带来的兼容性问题,并建议正确指定参数来处理多层数据。</think>### 分步解决方案 #### 问题背景 在使用Seurat的`IntegrateData`函数时,出现错误: ``` Error in `GetAssayData()`: GetAssayData doesn't work for multiple layers in v5 assay ``` 此错误与Seurat v5版本引入的**分层存储结构(layers)**有关。新版本默认使用分层存储(如`counts`、`data`等),而旧版函数调用未适配该特性时会导致兼容性问题[^1]。 --- #### 解决方法 1. **确认Seurat版本兼容性** - **v5版本特性**:Seurat v5支持多层数据存储,但旧版代码(如`IntegrateData`或`as.SingleCellExperiment`)可能需要调整参数。 - **检查版本**: ```r packageVersion("Seurat") # 需 >=5.0.0 ``` 2. **明确指定数据层** - 在调用`GetAssayData()`或相关函数时,**强制指定层名**(如`layer = "counts"`): ```r sce.pbmc <- as.SingleCellExperiment(seurat, layer = "counts") # 指定提取的layer ``` 3. **降级到v4版本(临时方案)** - 若需兼容旧代码,可降级至Seurat v4(需重建对象): ```r # 卸载v5后安装v4 remove.packages("Seurat") devtools::install_version("Seurat", version = "4.3.0") # 引用[3] ``` 4. **更新集成代码适配v5** - 使用v5的`IntegrateLayers()`替代旧版`IntegrateData()`: ```r integrated <- IntegrateLayers( object = seurat, method = CCAIntegration, # 或HarmonyIntegration orig.reduction = "pca", new.reduction = "integrated" ) ``` --- #### 关键参数说明 | 函数/参数 | 作用 | |-------------------------|--------------------------------------------------------------------| | `layer = "counts"` | 指定提取的layer名称(v5必须) | | `IntegrateLayers()` | v5中替代`IntegrateData`的分层集成方法 | | `method = CCAIntegration` | 集成方法(可选`HarmonyIntegration`或`RPCAIntegration`) | ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值