图像融合论文阅读:Dif-fusion: Towards high color fidelity in infrared and visible image fusion with diffusion

@article{yue2023dif,
title={Dif-fusion: Towards high color fidelity in infrared and visible image fusion with diffusion models},
author={Yue, Jun and Fang, Leyuan and Xia, Shaobo and Deng, Yue and Ma, Jiayi},
journal={arXiv preprint arXiv:2301.08072},
year={2023}
}


论文级别:-
影响因子:-

📖[论文下载地址]
💽[代码下载地址]



📖论文解读

以往的VIF网络将多通道图像转换为单通道图像,忽略了【颜色保真】,为了解决这个问题,作者提出了【基于扩散模型】的图像融合网络【Dif-Fusion】,在具有正向扩散和反向扩散的潜在空间中,使用降噪网络【建立多通道数据分布】,然后降噪网络【提取】包含了可见光信息和红外信息的【多通道扩散特征】,最后将扩散特征输入多通道融合模块生成三通道的融合图像。

🔑关键词

Image fusion, color fidelity, multimodal information, diffusion models, latent representation, deep generative
model.
图像融合,颜色保真度,多模态信息,扩散模型,潜在表示,深度生成模型

💭核心思想

将源图像通道拼接,输入扩散模型,然后从扩散模型中提取扩散特征,通过多通道的扩散特征,输入多通道融合网络中恢复出多通道的融合图像

参考链接
[什么是图像融合?(一看就通,通俗易懂)]

🪢网络结构

作者提出的网络结构如下所示。
在这里插入图片描述
在这里插入图片描述

📉损失函数

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

🔢数据集

图像融合数据集链接
[图像融合常用数据集整理]

🎢训练设置

🔬实验

📏评价指标

  • MI
  • VIF
  • SF
  • Qabf
  • SD

参考资料
[图像融合定量指标分析]

🥅Baseline

  • FusionGAN, SDDGAN, GANMcC, SDNet, U2Fusion, TarDAL

✨✨✨参考资料
✨✨✨强烈推荐必看博客[图像融合论文baseline及其网络模型]✨✨✨

🔬实验结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

更多实验结果及分析可以查看原文:
📖[论文下载地址]
💽[代码下载地址]


🚀传送门

📑图像融合相关论文阅读笔记

📑[LRRNet: A Novel Representation Learning Guided Fusion Network for Infrared and Visible Images]
📑[(DeFusion)Fusion from decomposition: A self-supervised decomposition approach for image fusion]
📑[ReCoNet: Recurrent Correction Network for Fast and Efficient Multi-modality Image Fusion]
📑[RFN-Nest: An end-to-end resid- ual fusion network for infrared and visible images]
📑[SwinFuse: A Residual Swin Transformer Fusion Network for Infrared and Visible Images]
📑[SwinFusion: Cross-domain Long-range Learning for General Image Fusion via Swin Transformer]
📑[(MFEIF)Learning a Deep Multi-Scale Feature Ensemble and an Edge-Attention Guidance for Image Fusion]
📑[DenseFuse: A fusion approach to infrared and visible images]
📑[DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pair]
📑[GANMcC: A Generative Adversarial Network With Multiclassification Constraints for IVIF]
📑[DIDFuse: Deep Image Decomposition for Infrared and Visible Image Fusion]
📑[IFCNN: A general image fusion framework based on convolutional neural network]
📑[(PMGI) Rethinking the image fusion: A fast unified image fusion network based on proportional maintenance of gradient and intensity]
📑[SDNet: A Versatile Squeeze-and-Decomposition Network for Real-Time Image Fusion]
📑[DDcGAN: A Dual-Discriminator Conditional Generative Adversarial Network for Multi-Resolution Image Fusion]
📑[FusionGAN: A generative adversarial network for infrared and visible image fusion]
📑[PIAFusion: A progressive infrared and visible image fusion network based on illumination aw]
📑[CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for Multi-Modality Image Fusion]
📑[U2Fusion: A Unified Unsupervised Image Fusion Network]
📑综述[Visible and Infrared Image Fusion Using Deep Learning]

📚图像融合论文baseline总结

📚[图像融合论文baseline及其网络模型]

📑其他论文

📑[3D目标检测综述:Multi-Modal 3D Object Detection in Autonomous Driving:A Survey]

🎈其他总结

🎈[CVPR2023、ICCV2023论文题目汇总及词频统计]

✨精品文章总结

[图像融合论文及代码整理最全大合集]
[图像融合常用数据集整理]

如有疑问可联系:420269520@qq.com;
码字不易,【关注,收藏,点赞】一键三连是我持续更新的动力,祝各位早发paper,顺利毕业~

### ESP32-S3 Print to Stdout and Stderr Examples In the context of programming an ESP32-S3, directing output specifically to `stdout` or `stderr` can be achieved through custom logging functions that utilize file descriptors associated with these streams. Given that `stdout` operates under line buffering by default while `stderr` is unbuffered[^1], it's important to understand how this behavior impacts debugging and monitoring applications running on microcontrollers like the ESP32-S3. For demonstration purposes, consider implementing a simple example using C++ within the Arduino IDE framework for ESP32 devices: #### Example Code Demonstrating Output to Stdout and Stderr ```cpp #include "Arduino.h" void setup() { Serial.begin(115200); // Redirecting stdout and stderr to serial port. setvbuf(stdout, NULL, _IONBF, 0); // Disable buffering for stdout printf("This message goes to stdout\n"); fprintf(stderr, "This error message goes directly to stderr without waiting.\n"); } void loop() { delay(1000); } ``` The above code snippet initializes communication at a baud rate suitable for observing outputs via USB-to-serial connection. By disabling buffering for `stdout`, messages sent there will behave similarly to those directed towards `stderr`: they are immediately flushed out upon execution of the respective print statements. Additionally, when working in environments where Python might interact with such hardware (for instance, during model training phases as mentioned), ensuring proper handling of standard input/output streams becomes crucial especially around package management tasks involving tools like `pip`. However, direct interaction between Python scripts and ESP32-S3 concerning I/O redirection would typically occur over UART interfaces rather than modifying internal C/C++ program behaviors[^2]. --related questions-- 1. How does one modify buffer settings for different types of streams in embedded systems? 2. What methods exist for enhancing debug information visibility from ESP32-S3 projects? 3. Can you explain more about setting up virtual environments specific to ESP32 development workflows? 4. In what scenarios should developers prefer using `fprintf` over `printf` in their programs targeting microcontroller units?
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

图像强

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值