非线性控制2.0——滑模控制基础

一、滑模控制

滑模变结构控制理论是由俄罗斯学者Emelyanov提出,Utkin等人倡导的一种特殊的非线性控制理论。

考虑非线性系统

                                                                      x=f(x,u,t)

其中,x\in R^{n}u\in R^{m}t\in R。选取滑模函数s(x)\in R^{m}。并寻求控制

                                                    u_{i}(x)=\left\{\begin{matrix} u_{i}^{+}(x)& ,s_{i}(x)>0\\ u_{i}^{-}(x) & ,s_{i}(x)<0 \end{matrix}\right.

使得:

(1)滑模面(即滑模函数 s_{i}(x)=0的超平面)以外的相轨迹于有限时间内到达滑模面。这称之为到达条件,即满足: 

                                                            \lim_{s\rightarrow 0^{+}}s=0, \lim_{s\rightarrow 0^{-}}s=0

此时系统的运动称之为趋近运动或趋近模态。 

(2)滑模面上降阶系统(当系统处于滑模面上,系统此时阶次降低,因而简称降阶系统)的运动渐近稳定,动态品质好。此时系统的运动称之为滑动模态。这种通过切换控制迫使系统产生一种具有良好动态品质的滑动模态运动的控制系统,称为滑动模态变结构控制系统,简称滑模控制系统。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

路漫求索_CUMT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值